Pascal's Triangle II
来自 lettcode给出一个数字,然后计算那一层的数字。
Input: 3
Output: [1,3,3,1]
看讨论求,用 Python 求解,巧妙的利用了 zip 这个特性:
def getRow(rowIndex):
row = [1]
for _ in range(rowIndex):
row = [x+y for x, y in zip([0] + row, row+[0])]
return row
当前数字等于上一层当前位置的数字加之前一个数字。
使用 C++ 来写更容易明白一些:
vector<int> getRow(int rowIndex) {
vector<int> vi(rowIndex+1);
vi[0] = 1;
for(int i = 0; i <= rowIndex; ++i)
{
for(int j = i; j > 0; --j){
vi[j] = vi[j] + vi[j-1];
}
}
return vi;
}
构造 Triangle
与上面不同的是,这个问题是需要构造完整的 Triangle
def generate(numRows):
pascal = [[1] *(i+1) for i in range(numRows)]
for i in range(numRows):
for j in range(1, i):
pascal[i][j] = pascal[i-1][j-1] + pascal[i-1][j]
return pascal
Triangle 找出一条最小的路径
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
最小路径是 2 + 3 + 5 + 1 = 11.
首先可以构造一个一模一样的数组:
def minimumTotal(triangle):
"""
:type triangle: List[List[int]]
:rtype: int
构造一个一模一样的数组
"""
if not triangle:
return
res = [[0 for i in range(len(row))] for row in triangle]
res[0][0] = triangle[0][0]
for i in range(1, len(triangle)):
for j in range(len(triangle[i])):
if j == 0:
res[i][j] = res[i-1][j] + triangle[i][j]
elif j == len(triangle[i])-1:
res[i][j] = res[i-1][j-1] + triangle[i][j]
else:
res[i][j] = min(res[i-1][j-1], res[i-1][j]) + triangle[i][j]
return min(res[-1])
不用构造数组,直接修改原数组:
def minum(traingle):
# 从上往下
if not traingle:
return
for i in range(1, len(traingle)):
for j in range(len(traingle[i])):
if j ==0:
traingle[i][j] += traingle[i-1][j]
elif j == len(traingle[i])-1:
traingle[i][j] += traingle[i-1][j-1]
else:
traingle[i][j] += min(traingle[i-1][j], traingle[i-1][j-1])
return min(traingle[-1])
由底向上计算:
def minimumTotal(triangle):
"""
:type triangle: List[List[int]]
:rtype: int
"""
if not triangle:
return
res = triangle[-1]
for i in range(len(triangle)-2, -1, -1):
for j in range(len(triangle[i])):
res[j] = min(res[j], res[j+1]) + triangle[i][j]
return res[0]
网友评论