美文网首页
(五)完全随机梯度下降

(五)完全随机梯度下降

作者: 羽天驿 | 来源:发表于2020-04-06 16:11 被阅读0次

    一、代码

    import numpy as np
    import matplotlib.pyplot as plt
    
    X = np.linspace(-2,12,40).reshape(-1,1)
    
    w = np.random.randint(2,12,size = 1)
    
    b = np.random.randint(-10,10,size = 1)
    
    y = X*w + b + np.random.randn(40,1)*4.5
    
    # 将y.reshape(-1)一维的
    y = y.reshape(-1)
    
    plt.scatter(X,y,color = 'red')
    
    <matplotlib.collections.PathCollection at 0x2c3eeaa3ec8>
    
    output_1_1.png

    用方法,实现梯度下降

    m是样本的数量

    \nabla_{\theta}J(\theta) = \frac{2}{m}X^T(X\theta - y)

    f(x) = b+ w_1x + w_2x^2 + w_3x^3

    f(x) = bx^0 + w_1x + w_2x^2 + w_3x^3

    f(x) = w_0x^0 + w_1x + w_2x^2 + w_3x^3

    对数据X增加了一列,这一列对应着,截距

    # 作为训练数据,增加了一列,截距
    X_train = np.concatenate([X,np.ones(shape = (40,1))],axis = 1)
    X_train
    
    array([[-2.        ,  1.        ],
           [-1.64102564,  1.        ],
           [-1.28205128,  1.        ],
           [-0.92307692,  1.        ],
           [-0.56410256,  1.        ],
           [-0.20512821,  1.        ],
           [ 0.15384615,  1.        ],
           [ 0.51282051,  1.        ],
           [ 0.87179487,  1.        ],
           [ 1.23076923,  1.        ],
           [ 1.58974359,  1.        ],
           [ 1.94871795,  1.        ],
           [ 2.30769231,  1.        ],
           [ 2.66666667,  1.        ],
           [ 3.02564103,  1.        ],
           [ 3.38461538,  1.        ],
           [ 3.74358974,  1.        ],
           [ 4.1025641 ,  1.        ],
           [ 4.46153846,  1.        ],
           [ 4.82051282,  1.        ],
           [ 5.17948718,  1.        ],
           [ 5.53846154,  1.        ],
           [ 5.8974359 ,  1.        ],
           [ 6.25641026,  1.        ],
           [ 6.61538462,  1.        ],
           [ 6.97435897,  1.        ],
           [ 7.33333333,  1.        ],
           [ 7.69230769,  1.        ],
           [ 8.05128205,  1.        ],
           [ 8.41025641,  1.        ],
           [ 8.76923077,  1.        ],
           [ 9.12820513,  1.        ],
           [ 9.48717949,  1.        ],
           [ 9.84615385,  1.        ],
           [10.20512821,  1.        ],
           [10.56410256,  1.        ],
           [10.92307692,  1.        ],
           [11.28205128,  1.        ],
           [11.64102564,  1.        ],
           [12.        ,  1.        ]])
    

    根据矩阵求解的梯度,进行梯度下降

    生成系数时,必须考虑形状

    def gradient_descent(X,y):
        m = 1# 从40个样本中随机选取1个样本,计算梯度
        theta = np.random.randn(2) # theta中既有斜率,又有截距
        last_theta = theta + 0.1 #记录theta更新后,和上一步的误差
        precision = 1e-4 #精确度
        epsilon = 0.01 #步幅
        count= 0
        while True:
    #         当斜率和截距误差小于万分之一时,退出
            if (np.abs(theta - last_theta) < precision).all():
                break
            if count > 50000:#死循环执行了3000次
                break
    #         更新
            last_theta = theta.copy()
    #     随机梯度下降,梯度是矩阵计算返回的
            index = np.random.choice(np.arange(40),size = m)# index索引,根据随机索引从原数据中取数据
            grad = 2/m*X[index].T.dot(X[index].dot(theta) - y[index])
            theta -= epsilon*grad
            count += 1
        return theta
    w_,b_ = gradient_descent(X_train,y)
    j = lambda x : w_*x + b_
    plt.scatter(X[:,0],y,color = 'red')
    x_test = np.linspace(-2,12,1024) 
    y_ = j(x_test)
    plt.plot(x_test,y_,color = 'green')
    
    [<matplotlib.lines.Line2D at 0x2c3eec8d388>]
    
    output_10_1.png
    def gradient_descent(X,y):
        m = 5# 从40个样本中随机选取1个样本,计算梯度
        theta = np.random.randn(2) # theta中既有斜率,又有截距
        last_theta = theta + 0.1 #记录theta更新后,和上一步的误差
        precision = 1e-4 #精确度
        epsilon = 0.01 #步幅
        count= 0
        while True:
    #         当斜率和截距误差小于万分之一时,退出
            if (np.abs(theta - last_theta) < precision).all():
                break
            if count > 10000:#死循环执行了3000次
                break
    #         更新
            last_theta = theta.copy()
    #     随机梯度下降,梯度是矩阵计算返回的
            index = np.random.choice(np.arange(40),size = m)# index索引,根据随机索引从原数据中取数据
            grad = 2/m*X[index].T.dot(X[index].dot(theta) - y[index])
            theta -= epsilon*grad
            count += 1
        return theta
    w_,b_ = gradient_descent(X_train,y)
    j = lambda x : w_*x + b_
    plt.scatter(X[:,0],y,color = 'red')
    x_test = np.linspace(-2,12,1024) 
    y_ = j(x_test)
    plt.plot(x_test,y_,color = 'green')
    
    [<matplotlib.lines.Line2D at 0x2c3eecf7f08>]
    
    output_11_1.png

    相关文章

      网友评论

          本文标题:(五)完全随机梯度下降

          本文链接:https://www.haomeiwen.com/subject/qwhduhtx.html