美文网首页数据思维与方法数据分析
电商平台用户行为分析(SQL)

电商平台用户行为分析(SQL)

作者: 分类讨论 | 来源:发表于2020-11-19 18:26 被阅读0次

    本文是对淘宝业务分析案例的汇总。本次分析从用户,商品以及平台三大方面展开,利用了漏斗分析、维度拆分、象限分层、RFM模型等分析方法,通过MySql进行数据的处理,最后利用PowerBI进行数据的可视化。

    项目背景

    移动互联网企业从粗放式到精细化运营管理过程中,需要结合市场、渠道、用户行为等数据分析,对用户开展有针对性的运营活动,提供个性化、差异化的运营策略,以实现运营业务指标。本项目利用sql对淘宝用户行为数据进行分析,通过用户行为分析业务问题,提供针对性的运营策略。

    分析目标

    本次分析希望通过淘宝的用户行为数据,了解淘宝基本情况。建立用户行为漏斗,探索需要优化的空间。同时对用户行为及商品展开多维度拆分,针对不同类别的用户及商品开展不同策略的精细化运营。

    数据来源及描述:

    分析框架

    image.png

    数据导入:

    1. 将数据保存到本地;
    2. 进入MySql,进入要保存的database,创建表;
    3. 导入数据
    mysql> load data local infile "C:\\Users\\MaJie\\Desktop\\tbt\\UserBehavior\\UserBehavior.csv"
        -> into table user
        -> fields terminated by ","
        -> lines terminated by "\n";
    

    备注:由于数据量较大,运行较慢,只取了原数据中的2000000条进行分析

    mysql> create table userbehavior as select * from user limit 2000000;
    

    数据清洗

    1. 查看数据缺失值:判断各列的数量是否一致
    mysql> SELECT count(user_id),count(item),count(category),count(behavior),count(time) from userbehavior;
    
    1. 通过查看数据发现,time为时间戳格式,需要进行时间格式转化
    mysql> alter table userbehavior add date varchar(20);
    mysql> alter table userbehavior add hour varchar(20);
    mysql> update userbehavior set date = from_unixtime(time,"%Y-%m-%d");
    mysql> update userbehavior set hour = from_unixtime(time,"%H");
    mysql> select * from userbehavior limit 2;
    +---------+---------+----------+----------+------------+------------+------+
    | user_id | item    | category | behavior | time       | date       | hour |
    +---------+---------+----------+----------+------------+------------+------+
    |       1 | 2268318 |  2520377 | pv       | 1511544070 | 2017-11-25 | 01   |
    |       1 | 2333346 |  2520771 | pv       | 1511561733 | 2017-11-25 | 06   |
    +---------+---------+----------+----------+------------+------------+------+
    
    1. 通过查看发现数据主要聚集在11月25日到12-03日之间,取此区间,删除其他数据
    # 查看时间聚集情况
    select date, count(*) from userbehavior group by date;
    # 删除其余数据
    DELETE FROM userbehavior
    WHERE date < '2017-11-25' or date > '2017-12-03';
    mysql> select date, count(*) from userbehavior group by date;
    +------------+----------+
    | date       | count(*) |
    +------------+----------+
    | 2017-11-25 |   207782 |
    | 2017-11-26 |   213387 |
    | 2017-11-27 |   198661 |
    | 2017-11-28 |   197818 |
    | 2017-11-29 |   202267 |
    | 2017-11-30 |   208777 |
    | 2017-12-01 |   219657 |
    | 2017-12-02 |   273945 |
    | 2017-12-03 |   276715 |
    +------------+----------+
    

    数据分析

    1. 常规指标情况

    1.1 PV,UV,用户平均访问量(PV/UV)
    mysql> select
        -> sum(case when behavior = "pv" then 1 else 0 end) as PV,
        -> (select count(*) from (select user_id from userbehavior group by user_id) as g) as UV,
        -> (sum(case when behavior = "pv" then 1 else 0 end) / (select count(*) from (select user_id from userbehavior group by user_id) as g)) as 'PV/UV'
        -> from userbehavior;
    +---------+-------+---------+
    | PV      | UV    | PV/UV   |
    +---------+-------+---------+
    | 1790225 | 19544 | 91.5997 |
    +---------+-------+---------+
    
    image.png

    通过统计可知,在2017-11-25 到 2017-12-03之间:
    访问量PV:1790225
    访问用户数UV:19544
    用户平均访问量:约92

    1.2 日平均访问量DAU:
    mysql> select date, count(user_id) as DAU from (select date,user_id from userbehavior group by date, user_id) as g group by date;
    +------------+-------+
    | date       | DAU   |
    +------------+-------+
    | 2017-11-25 | 13927 |
    | 2017-11-26 | 14215 |
    | 2017-11-27 | 14024 |
    | 2017-11-28 | 14037 |
    | 2017-11-29 | 14247 |
    | 2017-11-30 | 14502 |
    | 2017-12-01 | 14685 |
    | 2017-12-02 | 19169 |
    | 2017-12-03 | 19166 |
    +------------+-------+
    
    image.png

    日活跃用户数整体上升,在12/02与12/03开始增幅较大,可能与双十二活动推广有关。

    1.3 复购率

    复购率:在某时间窗口内重复消费用户(消费两次及以上的用户)在总消费用户中占比

    • 单日复购率
    mysql> select date,
        ->     count(user_id) as "购买总人数",
        ->     sum(case when buy_num_day > 1 then 1 else 0 end) as "单日复购人数",
        ->     (sum(case when buy_num_day > 1 then 1 else 0 end) / count(user_id)) as "复购率"
        -> from(
        ->     select date, user_id, count(*) as buy_num_day
        ->     from userbehavior
        ->     where behavior = "buy"
        ->     group by date, user_id) as g
        -> group by date;
    +------------+-----------------+--------------------+-----------+
    | date       | 购买总人数       | 单日复购人数        | 复购率    |
    +------------+-----------------+--------------------+-----------+
    | 2017-11-25 |            2626 |                747 |    0.2845 |
    | 2017-11-26 |            2635 |                792 |    0.3006 |
    | 2017-11-27 |            2882 |                866 |    0.3005 |
    | 2017-11-28 |            2741 |                849 |    0.3097 |
    | 2017-11-29 |            2868 |                880 |    0.3068 |
    | 2017-11-30 |            2949 |                872 |    0.2957 |
    | 2017-12-01 |            2811 |                827 |    0.2942 |
    | 2017-12-02 |            3396 |                952 |    0.2803 |
    | 2017-12-03 |            3517 |               1001 |    0.2846 |
    +------------+-----------------+--------------------+-----------+
    
    image.png
    • 整体复购率
    mysql> select
        ->     sum(case when buy_num > 1 then 1 else 0 end) as "整体复购人数",
        ->     count(user_id) as "购买总人数",
        ->     sum(case when buy_num > 1 then 1 else 0 end)/count(user_id) as "复购率"
        -> from(
        ->     select *,count(behavior) as buy_num
        ->     from userbehavior
        ->     where behavior = 'buy'
        ->     group by user_id) as g;
    +--------------------+-----------------+-----------+
    | 整体复购人数        | 购买总人数       | 复购率    |
    +--------------------+-----------------+-----------+
    |               8795 |           13330 |    0.6598 |
    +--------------------+-----------------+-----------+
    

    从日复购率情况来看,日复购率在29%左右稳定波动,较为稳定。
    从整体复购率来看,复购率高达约66%,表名淘宝的用户忠诚度较高

    1.4 跳失率

    跳失率:仅仅访问了单个页面的用户占全部访问用户的百分比,或者指从首页离开网站的用户占所有访问用户的百分比。即用户的behavior为1。
    跳失率是衡量网站\APP内容质量的重要标准。

    mysql> select count(user_id) as "访问一次页面的用户数"
        -> from(
        ->     select user_id
        ->     from userbehavior
        ->     group by user_id
        ->     having count(behavior) = 1) as g;
    +--------------------------------+
    | 访问一次页面的用户数             |
    +--------------------------------+
    |                              1 |
    +--------------------------------+
    # 查看下该用户的访问情况
    select * from userbehavior where user_id = (select user_id from userbehavior group by user_id having count(behavior) = 1);
    +---------+---------+----------+----------+------------+------------+------+
    | user_id | item    | category | behavior | time       | date       | hour |
    +---------+---------+----------+----------+------------+------------+------+
    |  152435 | 4895956 |  2465336 | pv       | 1511567056 | 2017-11-25 | 07   |
    +---------+---------+----------+----------+------------+------------+------+
    

    9天时间跳失率仅为1,表明淘宝在产品与内容的运营上表现优秀,有足够的用户吸引力,确保用户可以长时间驻留选择。

    2. 用户行为访问漏斗

    常规转化流程大致为:

    image.png 结合数据集behavior列,这里简化访问漏斗为:
    访问量(pv) ==> 加购物车数(cart) ==> 购买数(buy)
    • 流量( PV)转化漏斗
    select behavior, count(*) from userbehavior group by behavior; 
    +----------+----------+
    | behavior | count(*) |
    +----------+----------+
    | buy      |    40243 |
    | cart     |   111015 |
    | fav      |    57526 |
    | pv       |  1790225 |
    +----------+----------+
    
    • 用户(UV)转化漏斗
    mysql> select behavior, count(user_id)
        -> from (select behavior, user_id from userbehavior group by behavior, user_id) as g
        -> group by behavior;
    +----------+----------------+
    | behavior | count(user_id) |
    +----------+----------------+
    | buy      |          13330 |
    | cart     |          14672 |
    | fav      |           7854 |
    | pv       |          19463 |
    +----------+----------------+
    
    image.png
    • 从PV转化来看:从浏览PV到加入购物车的转化率仅为6.2%,用户需要花费大量的精力在挑选商品上
    • 从UV转化来看:从浏览UV到购买UV转化率达到68.5%,表名用户的实际购买需求较高,且商品种类能够满足用户的购买需求。
    • 结合PV及UV的转化:用户能够在淘宝购买到满足自己需求的商品,但需要花费大量精力在挑选商品上。平台在商品推荐及搜索匹配环节有待提高。
    • 改善建议:建议平台在商品推荐及搜索匹配等几个入口,根据用户基础及行为信息进行算法优化,提高商品推荐准确率,降低用户寻找商品的成本。

    3. 用户行为分析——时间维度拆分

    3.1 用户行为分析——按天拆解:

    查看用户每天各行为的情况
    用户数,访问量,加购量,收藏量,购买量

    mysql> select aa.date, bb.用户数, aa.访问量, aa.加购量, aa.收藏量, aa.购买量
        -> from(
        ->     select date,
        ->         sum(case when behavior = 'pv' then 1 else 0 end) as '访问量',
        ->         sum(case when behavior = 'cart' then 1 else 0 end) as '加购量',
        ->         sum(case when behavior = 'fav' then 1 else 0 end) as '收藏量',
        ->         sum(case when behavior = 'buy' then 1 else 0 end) as '购买量'
        ->     from userbehavior
        ->     group by date) as aa
        -> inner join(
        ->     select date, count(*) as  '用户数'
        ->     from (select date, user_id from userbehavior group by date, user_id) as g
        ->     group by date) as bb
        -> on aa.date = bb.date;
    +------------+-----------+-----------+-----------+-----------+-----------+
    | date       | 用户数    | 访问量     | 加购量    | 收藏量     | 购买量     |
    +------------+-----------+-----------+-----------+-----------+-----------+
    | 2017-11-25 |     13927 |    186480 |     11405 |      5926 |      3971 |
    | 2017-11-26 |     14215 |    191557 |     11560 |      6277 |      3993 |
    | 2017-11-27 |     14024 |    177388 |     10959 |      5827 |      4487 |
    | 2017-11-28 |     14037 |    177040 |     10826 |      5727 |      4225 |
    | 2017-11-29 |     14247 |    181006 |     10856 |      5921 |      4484 |
    | 2017-11-30 |     14502 |    187171 |     11292 |      5802 |      4512 |
    | 2017-12-01 |     14685 |    196714 |     12572 |      6057 |      4314 |
    | 2017-12-02 |     19169 |    245281 |     15791 |      7849 |      5024 |
    | 2017-12-03 |     19166 |    247588 |     15754 |      8140 |      5233 |
    +------------+-----------+-----------+-----------+-----------+-----------+
    
    image.png

    从12/02与12/03,各项数据指标明显提高,推测与淘宝双12预热活动相关。

    3.2 用户行为分析——按小时拆解:

    mysql> select aa.hour, bb.用户数, aa.访问量, aa.加购量, aa.收藏量, aa.购买量
        -> from(
        ->     select hour,
        ->         sum(case when behavior = 'pv' then 1 else 0 end) as '访问量',
        ->         sum(case when behavior = 'cart' then 1 else 0 end) as '加购量',
        ->         sum(case when behavior = 'fav' then 1 else 0 end) as '收藏量',
        ->         sum(case when behavior = 'buy' then 1 else 0 end) as '购买量'
        ->     from userbehavior
        ->     group by hour) as aa
        -> inner join(
        ->     select hour, count(*) as  '用户数'
        ->     from (select hour, user_id from userbehavior group by hour, user_id) as g
        ->     group by hour) as bb
        -> on aa.hour = bb.hour;
    +------+-----------+-----------+-----------+-----------+-----------+
    | hour | 用户数    | 访问量     | 加购量    | 收藏量     | 购买量     |
    +------+-----------+-----------+-----------+-----------+-----------+
    | 00   |      6338 |     60816 |      3723 |      2030 |      1167 |
    | 01   |      3249 |     27836 |      1756 |       884 |       484 |
    | 02   |      1932 |     15475 |       925 |       597 |       284 |
    | 03   |      1385 |     11355 |       750 |       366 |       129 |
    | 04   |      1223 |      9515 |       586 |       306 |       156 |
    | 05   |      1617 |     10848 |       777 |       406 |       151 |
    | 06   |      3442 |     22997 |      1577 |       863 |       354 |
    | 07   |      6400 |     43886 |      2849 |      1382 |       735 |
    | 08   |      8802 |     60974 |      3839 |      1976 |      1249 |
    | 09   |     10367 |     74294 |      4602 |      2531 |      1884 |
    | 10   |     11482 |     86088 |      5293 |      2932 |      2484 |
    | 11   |     11681 |     84907 |      5350 |      2967 |      2512 |
    | 12   |     11819 |     86032 |      5219 |      2848 |      2430 |
    | 13   |     12050 |     94554 |      5541 |      3099 |      2573 |
    | 14   |     11731 |     91500 |      5355 |      2802 |      2332 |
    | 15   |     11978 |     95059 |      5616 |      3045 |      2474 |
    | 16   |     11870 |     92677 |      5499 |      2898 |      2345 |
    | 17   |     11541 |     83124 |      5344 |      2862 |      2069 |
    | 18   |     11492 |     86114 |      4988 |      2607 |      1868 |
    | 19   |     12424 |    108553 |      6368 |      3269 |      2326 |
    | 20   |     13130 |    131941 |      7911 |      3909 |      2686 |
    | 21   |     13441 |    149720 |      9340 |      4372 |      2799 |
    | 22   |     12895 |    149017 |      9692 |      4718 |      2766 |
    | 23   |     10187 |    112943 |      8115 |      3857 |      1986 |
    +------+-----------+-----------+-----------+-----------+-----------+
    
    image.png

    从一天内不同时刻各项数据指标来看,从5点到10点,各项指标处于上升阶段,10点到18点各项指标持续稳定在较高的水平,从19点到22点到达高峰,之后开始下降。与用户的作息规律基本吻合。
    在活动运营时,在10-22点大概率会获得更好的效果,尤其是在19-22点之间,处于用户最活跃的时间段,适合各种活动营销的开展。

    4. 用户行为分析——商品维度拆解

    4.1 商品浏览量排行榜Top10

    mysql> select item, count(*) as '浏览量'
        -> from userbehavior
        -> where behavior = 'pv'
        -> group by item
        -> order by count(*) desc
        -> limit 10;
    +---------+-----------+
    | item    | 浏览量    |
    +---------+-----------+
    |  812879 |       377 |
    | 3845720 |       320 |
    | 2331370 |       301 |
    |  138964 |       294 |
    | 2032668 |       293 |
    | 3708121 |       258 |
    | 1535294 |       256 |
    | 3031354 |       252 |
    |  987143 |       246 |
    | 3371523 |       238 |
    +---------+-----------+
    

    4.2 商品销量排行榜Top10

    mysql> select item, count(*) as '购买量'
        -> from userbehavior
        -> where behavior = 'buy'
        -> group by item
        -> order by count(*) desc
        -> limit 10;
    +---------+-----------+
    | item    | 购买量    |
    +---------+-----------+
    | 3122135 |        35 |
    | 3237415 |        17 |
    | 1910706 |        16 |
    | 2560262 |        16 |
    | 3031354 |        15 |
    | 2964774 |        15 |
    | 1034594 |        14 |
    | 4157341 |        14 |
    |  705557 |        14 |
    | 4574184 |        13 |
    +---------+-----------+
    

    4.3 浏览量Top10中购买量Top10的占比

    mysql> select aa.item, aa.浏览量, bb.购买量
        -> from(
        ->     select item, count(*) as '浏览量'
        ->     from userbehavior
        ->     where behavior = 'pv'
        ->     group by item
        ->     order by count(*) desc
        ->     limit 10) as aa
        -> inner join(
        ->     select item, count(*) as '购买量'
        ->     from userbehavior
        ->     where behavior = 'buy'
        ->     group by item
        ->     order by count(*) desc
        ->     limit 10) as bb
        -> on aa.item = bb.item;
    +---------+-----------+-----------+
    | item    | 浏览量    | 购买量    |
    +---------+-----------+-----------+
    | 3031354 |       265 |        15 |
    +---------+-----------+-----------+
    

    浏览量Top10的商品,只有1件在销量Top10,商品推荐算法不太准确,导致用户浏览的商品都不是自己满意的商品,需要对商品推荐算法再优化。

    4.4 四象限法分类优化——商品浏览数与销量的关系

    这里根据商品的浏览量与购买量将商品划分为四个象限,实际划分标准需要根据实际业务区划分。这里根据二八法则对两个维度进行划分。

    mysql> select aa.item, aa.浏览量, bb.购买量
        -> from(
        ->     select item, count(*) as '浏览量'
        ->     from userbehavior
        ->     where behavior = 'pv'
        ->     group by item
        ->     order by count(*) desc) as aa
        -> left join(
        ->     select item, count(*) as '购买量'
        ->     from userbehavior
        ->     where behavior = 'buy'
        ->     group by item
        ->     order by count(*) desc) as bb
        -> on aa.item = bb.item;
    +---------+-----------+-----------+
    | item    | 浏览量    | 购买量     |
    +---------+-----------+-----------+
    |  812879 |       377 |         2 |
    | 3845720 |       324 |         1 |
    | 2032668 |       301 |         3 |
    |  138964 |       296 |         3 |
    | 2331370 |       281 |         3 |
    |  ...... |   ......  |   ......  |
    +---------+-----------+-----------+
    
    image.png
    • 第一象限:商品浏览量与销量都高。这部分商品市场需求大,可以满足用户需求,可作为平台的重点推送产品
    • 第二象限:商品浏览量低,销量高。一方面可能此部分商品的特征明显,竞品较少,用户购买目标明确;另一方面可能此部分商品市场需求大,但平台对此部分商品的曝光度不足。对此部分商品,平台在算法推荐上,结合用户特征加强此部分商品的曝光。
    • 第三象限:商品浏览量低,销量低。一方面可能商品本身没有市场,另一方面也可能和曝光不足有关。对此部分商品从市场与运营两方面判断,如果市场空间不足则降低此部分商品数量,如果由于曝光度不够导致销量低,则需要根据商品特征,加强推广力度。
    • 第四象限:浏览量高但销量低。一方面,商品推荐可能不合理导致无法满足用户需求。另一方面,商品本身存在缺陷,导致用户无法接受直接放弃。

    5. 基于RFM用户分层模型分析用户行为

    RFM模型分析 数据集只涉及最近消费时间间隔R与消费频率F,消费金额M数据集未涉及,这里不对M分层,只通过RF进行用户行为细分。这里定义当前日期为2017/12/03。

    5.1 R维度分析

    # 获取时间间隔的范围区间
    mysql> select datediff('2017/12/03',max(date)) as min_datediff, datediff('2017/12/03',min(date)) as max_datediff from userbehavior;
    +--------------+--------------+
    | min_datediff | max_datediff |
    +--------------+--------------+
    |            0 |            8 |
    +--------------+--------------+
    

    可知数据集的时间间隔在区间[0:8]天,这里我们定义[0:3]为'1',[4:8]为'0'。(实际工作中看情况定义)

    mysql> select user_id, diff_time as R,
        ->     case when diff_time between 0 and 3 then '1'
        ->     when diff_time between 4 and 8 then '0'
        ->     end as R_num
        -> from(
        ->     select user_id, datediff('2017-12-03',max(date)) as 'diff_time'
        ->     from userbehavior
        ->     where behavior = 'buy'
        ->     group by user_id) as g;
    

    5.2 F维度分析

    select min(b_num), max(b_num)
    from (select user_id, count(*) as b_num from userbehavior where behavior = 'buy' group by user_id) as gg
    +------------+------------+
    | min(b_num) | max(b_num) |
    +------------+------------+
    |          1 |         72 |
    +------------+------------+
    

    通过查看,用户购买次数最少为1次,最多为72次。这里我们将36次作为标准,定义够阿米次数在[1:14]为0,[15:72]为1。

    mysql> select user_id, b_num as F,
        -> case when b_num between 1 and 14 then '1' else '0' end as F_num
        -> from(select user_id, count(*) as b_num from userbehavior where behavior = 'buy' group by user_id) as gg;
    

    5.3 RF维度分析

    • 将RF合并
    select ra.user_id, concat(R_num, F_num) as RF
    from(
        select user_id, diff_time as R,
            case when diff_time between 0 and 3 then '1'
            when diff_time between 4 and 8 then '0'
            end as R_num
        from(
            select user_id, datediff('2017-12-03',max(date)) as 'diff_time'
            from userbehavior
            where behavior = 'buy'
            group by user_id) as g) as ra
    inner join(
        select user_id, b_num as F,
        case when b_num between 1 and 14 then '1' else '0' end as F_num
        from(select user_id, count(*) as b_num from userbehavior where behavior = 'buy' group by user_id) as gg) as fa
    on ra.user_id = fa.user_id
    
    • 为用户分层
    select user_id,
        case when RF = '11' then '价值客户'
        when RF = '01' then '保持客户'
        when RF = '10' then '发展客户'
        when RF = '00' then '挽留客户' end as '用户分层'
    from (
        select ra.user_id, concat(R_num, F_num) as RF
        from(
            select user_id, diff_time as R,
                case when diff_time between 0 and 3 then '1'
                when diff_time between 4 and 8 then '0'
                end as R_num
            from(
                select user_id, datediff('2017-12-03',max(date)) as 'diff_time'
                from userbehavior
                where behavior = 'buy'
                group by user_id) as g) as ra
    inner join(
        select user_id, b_num as F,
        case when b_num between 1 and 14 then '1' else '0' end as F_num
        from(select user_id, count(*) as b_num from userbehavior where behavior = 'buy' group by user_id) as gg) as fa
    on ra.user_id = fa.user_id) as user_rf
    
    image.png
    • 不同类型客户的应对策略
    • 价值客户(11):最近消费时间近和消费频次都很高,提供VIP服务
    • 保持客户(01):最近消费时间较远,但消费频次很高,说明这是个一段时间没来的忠诚客户,我们需要主动和他保持联系。
    • 发展客户(10):最近消费时间较近,但频次不高,忠诚度不高,很有潜力的用户,必须重点发展。
    • 挽留客户(00):最近消费时间较远、消费频次不高,可能是将要流失或者已经要流失的用户,应当给予挽留措施。

    6. 探究淘宝商业模式满足“二八定律”还是“长尾理论”

    1. 提出假设:淘宝商业模式满足“二八定律”

    2. 分析过程

    如果淘宝的商业模式满足“二八定律”,那么在淘宝,20%的商品将占有总销量的百分之80%

    mysql> select item, count(*) as item_num
        -> from userbehavior
        -> where behavior = 'buy'
        -> group by item
        -> order by item_num desc
        -> limit 10;
    +---------+----------+
    | item    | item_num |
    +---------+----------+
    | 3122135 |       35 |
    | 3237415 |       17 |
    | 1910706 |       16 |
    | 2560262 |       16 |
    | 2964774 |       15 |
    | 3031354 |       15 |
    | 1034594 |       14 |
    | 4157341 |       14 |
    |  705557 |       14 |
    | 3189426 |       13 |
    +---------+----------+
    
    image.png

    根据查询结果,可以看到,销量最多的商品也只卖出35件,其余商品卖出的更少。因此以淘宝为代表的电商平台,其商品售卖主要是依靠长尾商品的累计效应,并非爆款商品的带动。

    7. 总结

    • 从平台基本指标来看:
      • PV/UV/DAU及日复购率均维持稳定,跳失率极少,9日的整体复购率高达66%。表名当前淘宝在用户,平台,商品的运营稳定且对用户有足够的吸引力,同时从9日复购率来看,用户的忠诚度较高
      • 从漏斗转化模型来看,UV转化率高达68.5%,而PV的转化率仅2.2%。用户本身有足够的购买需求且平台也能满足用户的购买需求,但用户需要花费大量的成本在寻找合适的商品上。因平台在商品推荐以及搜索匹配等方面需要进行优化,能够通过用户偏好准确推送相应的商品
    • 用户行为拆分看:
      • 按天来看,在12/02日开始各项指标均有明显上升,可能在12/02日展开了双十二购物街的活动预热,同时效果明显;
      • 从一天中的各个时刻来看,用户在10:00 - 22:00活跃度较高,各项活动运营是个在此时间窗口中展开,尤其在19:00 - 22:00达到峰值。
      • 此外,通过RFM模型对用户进行分组,在后续的用户运营中,对不同的群组采取不同的运营方式,以最大化收益。
    • 商品拆分来看:
      • 通过从商品浏览量与销售量两个维度进行象限分析,根据不同象限商品的特征,采取不同的策略,提升转化率
      • 通过对“二八定律” 以及 “长尾理论” 的探究,发现淘宝的商业模式满足长尾理论。因此在后续的运营中,平台可以尝试丰富商品类型,以满足各式各样用户的需求,但也需要权衡成本,确保收益最大化。

    相关文章

      网友评论

        本文标题:电商平台用户行为分析(SQL)

        本文链接:https://www.haomeiwen.com/subject/qzdxiktx.html