数学史上把贝克莱的问题称之为“贝克莱悖论”。笼统地说,贝克莱悖论可以表述为“无穷小量究竟是否为0”的问题:就无穷小量在当时实际应用而言,它必须既是0,又不是0。但从形式逻辑而言,这无疑是一个矛盾。1734年,大主教乔治·贝克莱(George Berkeley) “渺小的哲学家”之名出版了一本标题很长的书《分析学家;或一篇致一位不信神数学家的论文,其中审查一下近代分析学的对象、原则及论断是不是比宗教的神秘、信仰的要点有更清晰的表达,或更明显的推理》。这本书中,贝克莱对牛顿的理论进行了攻击。例如他指责牛顿,为计算比如说x的导数,先将 取一个不为0的增量Δx,由(x + Δx)2 − x2,得到2xΔx + (Δx)2 ,后再被Δx除,得到2x + Δx,最后突然令Δx = 0 ,求得导数为2x 。这是“依靠双重错误得到了不科学却正确的结果”。因为无穷小量在牛顿的理论中一会儿说是零,一会儿又说不是零。因此,贝克莱嘲笑无穷小量是“已死量的幽灵”。贝克莱的攻击虽说出自维护神学的目的,但却真正抓住了牛顿理论中的缺陷,是切中要害的。解决 听语音
使分析基础严密化的工作由法国著名数学家柯西迈出了第一大步。柯西于1821年开始出版了几本具有划时代意义的书与论文。其中给出了分析学一系列基本概念的严格定义。如他开始用不等式来刻画极限,使无穷的运算化为一系列不等式的推导。这就是所谓极限概念的“算术化”。由此,沿柯西开辟的道路,建立起来的严谨的极限理论与实数理论,完成了分析学的逻辑奠基工作。数学分析的无矛盾性问题归纳为实数论的无矛盾性,从而使微积分学这座人类数学史上空前雄伟的大厦建在了牢固可靠的基础之上。重建微积分学基础,这项重要而困难的工作就这样经过许多杰出学者的努力而胜利完成了。微积分学坚实牢固基础的建立,结束了数学中暂时的混乱局面,同时也宣布了第二次数学危机的彻底解决。——摘自百度百科
网友评论