美文网首页
2020-09-28 航空学习笔记

2020-09-28 航空学习笔记

作者: ada456ada | 来源:发表于2020-09-28 14:10 被阅读0次

    横滚稳定性也很重要,在极端情况下,机身横滚到 90 度,机翼将不产生升力,如果不迅速恢复水平,就要迅速掉高度,最后坠机。在不那么极端的情况下,横滚可能导致飞机侧滑,也就是机头指向不变,但机身平行地向横倾方向滑动。飞机横滚时,机翼向下摆动的一侧不仅在飞机速度的作用下有通常的向前切割空气产生升力的作用,还有向下拍击空气产生额外升力的作用。两者的合成作用相当于这一侧机翼的迎角增加,升力比水平飞行时有所提高。机翼的另一侧向上摆动,相当于迎角减小,升力比稳定水平飞行是有所降低。两相作用,横滚中的飞机有自然回到水平的趋势。由于机翼的升力方向垂直于机翼平面,机翼上反的话,也就是说,机翼像浅 V 形一样,向下摆动一侧的机翼更接近水平,产生额外升力;向上摆动一侧的机翼更偏离水平,升力急剧下降,所以机翼上反强化了横滚稳定性,有助于迅速恢复水平。机翼下反则像倒置的浅 V 形,向下摆动一侧的机翼更加偏离水平,升力急剧下降;向上摆动一侧的机翼则更加接近水平,产生额外升力,加剧横滚趋向,实际上是促进横滚失稳的。促进横滚失稳有什么好呢?横滚稳定性太高有时候不好,飞机的转向不是靠垂尾上的舵面,而是通过横滚一定的角度,要是横滚稳定性太高了,飞机的转向性就很糟,所以这需要在设计上取得一个折中。横滚的支点在机翼和机身的结合处。下单翼飞机的机翼在机身底部,好像机身坐在机翼上一样。由于重心较高,机身有天然的失稳趋向,需要机翼上反,增加横滚稳定性。下单翼飞机的机翼上反,也给翼下腾出来有用的空间,可以吊挂翼下发动机,民航客机大多是这样的。战斗机采用下单翼可以缩短起落架长度,同样用上反来重建足够的横滚稳定性。上单翼飞机则相反,好像机身吊在机翼下一样。由于重心低和单摆效应,上单翼飞机的横滚稳定性天然就高,为了重建足够的机动性,需要机翼下反。运输机采用上单翼较多,可以使货舱地板较低,便于装卸,下反机翼下的发动机也便于维修。战斗机采用上单翼的话,便于吊挂炸弹、导弹,也需要机翼下反以重建足够的机动性。不过现代战斗机多采用中单翼,机翼不带上反或下反。这样的布局比较中性,兼顾稳定性和机动性的要求。

    http://www.360doc.com/content/13/0518/11/371241_286286072.shtml

    自从波音bai 707 采用翼下吊挂发动机布局以后,翼du下吊挂zhi发动机成为大型喷气式客机的主要形式。飞机dao靠机翼产生向上的升力,但飞机的重量大部分集中在机身,所以向下的重力集中在机身。这样,在机翼和机身的连接,升力和重力形成强烈的扭力,翼根成为结构上最吃重的地方,需要特别加强。翼下吊挂沉重的发动机可以把一部分重量分散到机翼上去,这样翼根的扭力就部分地被平衡掉了,对翼根结构的加强可以减少,重量就较轻,这就是所谓的翼下发动机的“卸载”作用。机翼内的大型油箱也有类似的作用。翼下发动机的吊挂点越靠外,卸载作用越明显;但发动机越靠外,一旦一侧发动机故障的话,不平衡推力也就越明显。所以卸载和飞行安全之间要平衡考虑,只有在确保飞行安全的情况下,才能考虑充分卸载的问题。另一个问题是发动机吊舱的设计。发动机吊舱的前缘需要领先于机翼前缘,以保证发动机在干净的气流场中,不和机翼发生不利的交互作用。发动机的吊架造成迎风阻力,所以不宜太长,但这还不是最大的问题。客机基本上采用下单翼,这样翼下的起落架长度可以缩短。但吊挂的发动机不能离地过近,否则容易吸入地面杂物,损坏发动机,造成危险。但发动机和机翼前缘没有足够高度差的话,发动机会对机翼前缘造成遮挡,极大地影响升力,需要增大翼展和翼面积,这增加了重量和阻力。发动机吊舱的设计是和机翼的上反、起落架一并综合考虑后,才能决定的,对飞行阻力。翼下吊挂发动机布局的最大优点是对机翼的卸载作用,当然,在空间容许的情况下,翼下发动机舱可以比较容易地在不同发动机之间更换,为飞机不断利用最新科技成果创造了条件。这对大型飞机尤其重要。这容许航空公司在不同的发动机公司之间选择,也使同一基本型号的飞机加长或缩短时可以和最合适的发动机相匹配。对于客机来说,翼下吊挂发动机的另一个优点是噪音较低,因为发动机远离机身,又有机翼遮挡。翼下吊挂发动机的离地高度较低,维修也比较容易。翼下吊挂发动机的增减也比较灵活,翼下双发、四发、六发、八发甚至更多,都能够容易地做到。除了少数例外。

    机尾发动机有一个独特的优势,可以做成三发。三发中的两发一般在机尾两侧,剩下的一个发动机既可以安排在机尾机身内,有垂尾根部的 S 形进气道供气;或者安排在垂尾翼根,向垂尾上的翼根发动机一样。这两种做法各有各的好处。机身内空间较大,发动机的重量不增加垂尾的负担,垂尾设计相对简单,但进气道占用体积大,进气损失也大。垂尾翼根发动机的特点正好相反。

    中小型飞机的重量小,机翼卸载的要求不高,机尾发动机布局可以简化和优化机翼设计,并容许起落架长度最短,用飞机自带的小阶梯就可以方便地上下飞机,所以一般采用机尾发动机布局。大型飞机的重量大,机翼卸载具有明显的好处,一般采用翼下发动机布局。

    工作时,由轴带动转子叶片高速旋转,空气在经过高速旋转的动叶叶片时被加速,同时在动叶中叶栅通道由窄变宽,使空气与动叶的相对速度变小,其相对动能就会被被转化成压力能,而动叶叶片是在高速运动的,空气与动叶的相对速度变小就意味着绝对速度增加,被加速的空气通过动叶后进入静叶,又被静叶减速,在通过静叶时,空气的动能减少了,但能量是守恒的,减少的动能变成了气体的压力能,即通过静叶时减速增压,之后进入下一级动叶又被加速扩压,而下一级的静叶又使空气减速增压,这样经过多级动叶和静叶,空气总压可以上升二三十倍。

    但是如果动叶的转速过快,就会在动叶的叶背处产生气流分离(动叶转速是否过快是由压气机进口气压,进口气流速度,空气流量和发动机转速等多种因素决定的,因此不存在转速超过某个定值就一定会发生分离),当气流分离严重时,动叶将失去扩压能力,即无法将气流压向后方,而压气机中的气压都是后面级高于前面级,无法将气流压向后方,就意味着后面的高压气体将倒流到前面,而高压气体一旦倒流到前面,后方的气压就减小,此时动叶又可以将空气压向后面级(因为此时后面级气压变小了),但此时动叶依然没有恢复正常工作时的扩压能力,一旦将空气压向后面级导致后面级气压增大,后面的高压气体又会向前倒流,接着后方气压减小,空气又被压回后面级,如此陷入一个恶性循环。这就是喘振,形象的说就是发动机咳嗽了。

    所以发生喘振时,气流会沿压气机轴向发生低频率(几赫兹到十几赫兹)高振幅的气流震荡,这种低频率高振幅的气流震荡会带动压气机的叶片产生强烈的震动,使叶片在短时间内发生严重损坏甚至断裂。

    更危险的是燃烧室火焰逆流,这种情况是由于压气机喘振太剧烈,导致后方的燃烧室的高温燃气倒流进压气机,使本应在燃烧室里燃烧的火焰从压气机喷到了发动机前面,即便这样过程只持续零点几秒,乱窜的高温火焰也足以烧坏压气机的所有叶片导致发动机报废。

    所以任何工作状态下都要极力避免压气机进入喘振状态。

    相关文章

      网友评论

          本文标题:2020-09-28 航空学习笔记

          本文链接:https://www.haomeiwen.com/subject/rddduktx.html