美文网首页
线性回归

线性回归

作者: zjh3029 | 来源:发表于2018-04-07 12:11 被阅读0次
    import tensorflow as tf
    import matplotlib.pyplot as plt
    import numpy as np
    import os
    
    os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
    
    def add_layer(inputs,in_size,out_size,activation_function=None):
        Weights=tf.Variable(tf.random_normal([in_size,out_size]))
        biases=tf.Variable(tf.zeros([1,out_size])+0.1)
        Wx_plus_b=tf.matmul(inputs,Weights)+biases
        if activation_function is None:
            outputs=Wx_plus_b
        else:
            outputs=activation_function(Wx_plus_b)
        return outputs
    
    x_data=np.linspace(-1,1,300,dtype=np.float32)[:,np.newaxis]
    noise=np.random.normal(0,0.05,x_data.shape).astype(np.float32)
    y_data=np.square(x_data)-0.5+noise
    
    fig=plt.figure()
    ax=fig.add_subplot(1,1,1)
    ax.scatter(x_data,y_data)
    plt.ion()
    plt.show()
    
    
    xs=tf.placeholder(tf.float32,[None,1])
    ys=tf.placeholder(tf.float32,[None,1])
    
    l1=add_layer(xs,1,10,activation_function=tf.nn.relu)
    prediction=add_layer(l1,10,1,activation_function=None)
    
    loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))
    train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    
    init=tf.global_variables_initializer()
    
    sess=tf.Session()
    sess.run(init)
    
    for i in range(2000):
        sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
        if i%50==0:
            try:
                ax.lines.remove(lines[0])
            except Exception:
                pass
            prediction_value=sess.run(prediction,feed_dict={xs:x_data})
            lines=ax.plot(x_data,prediction_value,'r-',lw=5)
            plt.pause(0.1)
    

    相关文章

      网友评论

          本文标题:线性回归

          本文链接:https://www.haomeiwen.com/subject/rechtftx.html