美文网首页
ucinet社会网络分析笔记(一)网络密度、中心度、凝聚子群、核

ucinet社会网络分析笔记(一)网络密度、中心度、凝聚子群、核

作者: LINDADADADA | 来源:发表于2020-09-03 12:17 被阅读0次

    在进行城市网络研究时,通常需要借鉴社会网络的分析方式,对网络各类指标进行计算。
    主要使用软件为Ucinet 6,在网上可以下载到

    QQ截图20200814160054.jpg

    1、数据准备

    类似于之前讲过的武汉城市圈高德迁徙数据,这里用的是上海都市圈2019年高德迁徙数据,根据前所述方法,在数据库中选取其中的工作日数据并计算日均值。
    注:高德迁徙数据获取方式目前不便于公开,请勿私信询问。
    此处上海都市圈范围为《上海市城市总体规划(2017-2035年)》中提出的上海大都市圈所包含的9个城市。
    在excel中运用“数据透视表”的方法制作出迁徙指数矩阵如下图(这是一个具有方向性的不对称矩阵,列中的城市代表迁入地,行中的城市代表迁出地):

    QQ截图20200814155959.jpg

    打开ucinet并导入矩阵数据:

    QQ截图20200814160824.jpg QQ截图20200814161021.jpg QQ截图20200814161046.jpg QQ截图20200814161101.jpg

    完成后会在同一文件夹中生成两个这样的文件:

    QQ截图20200814161215.jpg

    2、网络密度分析

    QQ截图20200814161959.jpg QQ截图20200814161850.jpg QQ截图20200814161944.jpg

    3、中心度分析

    (1)度数中心度

    QQ截图20200814162119.jpg QQ截图20200814163218.jpg

    其中,Treat data as symmetric 一栏代表是否将其视为对称矩阵。若选择Yes,说明将该矩阵视为对称矩阵,得出的结果是各城市单一的Degree;若选择No,则说明将该矩阵视为非对称矩阵,得出的结果分为出度(out degree)和入度(in degree)

    以下为选择Yes的结果:

    QQ截图20200814163437.jpg QQ截图20200814163444.jpg

    可见在上海都市圈范围内,苏州的度数中心度比上海要高,这是因为苏州与无锡、常州建立起了尤为紧密的联系

    以下为选择No的结果:

    QQ截图20200814164018.jpg QQ截图20200814164032.jpg

    可见各城市的迁徙方向是不对称的,例如苏州出度更高,而上海入度更高。

    (2)接近中心度

    QQ截图20200814212608.jpg QQ截图20200814212637.jpg QQ截图20200814212747.jpg

    (3)中介中心度

    QQ截图20200814212820.jpg QQ截图20200814212908.jpg

    4、CONCOR凝聚子群分析

    QQ截图20200814213132.jpg QQ截图20200814213145.jpg QQ截图20200814213210.jpg QQ截图20200814213228.jpg

    5、核心-边缘分析

    QQ截图20200814213410.jpg QQ截图20200814213435.jpg QQ截图20200814213523.jpg

    以上为LINDA不成熟的试验,可能会存在诸多问题敬请谅解!

    相关文章

      网友评论

          本文标题:ucinet社会网络分析笔记(一)网络密度、中心度、凝聚子群、核

          本文链接:https://www.haomeiwen.com/subject/rengdktx.html