宇称不守恒

作者: 光剑书架上的书 | 来源:发表于2020-10-09 23:04 被阅读0次

    宇称不守恒

    20世纪50年代初,科学家们从宇宙射线里观察到两种新的介子(即质量介于质子和电子之间的粒子):θ和τ。这两种介子的自旋、质量、寿命电荷等完全相同,很多人都认为它们是同一种粒子。但是,它们却具有不同的衰变模式,θ衰变时会产生两个π介子,τ则衰变成三个π介子,这说明它们遵循着不同的运动规律。

    说明:介子是一种质量比电子大,但比质子与中子小,自旋为整数,参与强相互作用的粒子,按内部量子数可分为π介子、ρ介子和K介子等。

    假使τ和θ是不同的粒子,它们怎么会具有一模一样的质量和寿命呢?而如果承认它们是同一种粒子,二者又怎么会具有完全不一样的运动规律呢?为了解决这一问题,物理学界曾提出过各种不同的想法,但都没有成功。物理学家们都小心翼翼地绕开了“宇称不守恒”这个可能。你能想像,一个电子和另一个电子的运动规律不一样吗?或者一个介子和另一个介子的运动规律不一样吗?当时的物理学家们可没这胆量。

    1956年,李政道和杨振宁在深入细致地研究了各种因素之后,大胆地断言:τ和θ是完全相同的同一种粒子(后来被称为K介子),但在弱相互作用的环境中,它们的运动规律却不一定完全相同!

    李政道和杨振宁的观点震动了当时的物理学界,他们在完美的物理学对称世界撕出了一个缺口!在最初,“θ-τ”粒子只是被作为一个特殊例外,人们还是不愿意放弃整体微观粒子世界的宇称守恒。此后不久,同为华裔的实验物理学家吴健雄用一个巧妙的实验验证了“宇称不守恒”,从此,“宇称不守恒”才真正被承认为一条具有普遍意义的基础科学原理。

    吴健雄用两套实验装置观测钴60的衰变,她在极低温(0.01K)下用强磁场把一套装置中的钴60原子核自旋方向转向左旋,把另一套装置中的钴60原子核自旋方向转向右旋,这两套装置中的钴60互为镜像。

    实验结果表明,这两套装置中的钴60放射出来的电子数有很大差异,而且电子放射的方向也不能互相对称。实验结果证实了弱相互作用中的宇称不守恒。

    不过,究竟为什么粒子在弱相互作用下会出现宇称不守恒呢?根本原因至今仍然是个谜。

    宇称不守恒的发现并不是孤立的。在微观世界里,基本粒子有三个基本的对称方式:
    1、一个是粒子和反粒子互相对称,即对于粒子和反粒子,定律是相同的,这被称为电荷(C)对称。
    2、一个是空间反射对称,即同一种粒子之间互为镜像,它们的运动规律是相同的,这叫宇称(P)。
    3、一个是时间反演对称,即如果我们颠倒粒子的运动方向,粒子的运动是相同的,这被称为时间(T)对称。
    这就是说,如果用反粒子代替粒子、把左换成右,以及颠倒时间的流向,那么变换后的物理过程仍遵循同样的物理定律。
    但是,自从宇称守恒定律被李政道和杨振宁打破后,科学家很快又发现,粒子和反粒子的行为并不是完全一样的!一些科学家进而提出,可能正是由于物理定律存在轻微的不对称,使粒子的电荷(C)不对称,导致宇宙大爆炸之初生成的物质比反物质略多了一点点,大部分物质与反物质湮灭了,剩余的物质才形成了我们今天所认识的世界。
    如果物理定律严格对称,宇宙连同我们自身就都不会存在了——宇宙大爆炸之后应当诞生了数量相同的物质和反物质,但正反物质相遇后就会立即湮灭,那么,星系、地球乃至人类就都没有机会形成了。
    接下来,科学家发现连时间本身也不再具有对称性了!可能大多数人原本就认为时光是不可倒流的。日常生活中,时间之箭永远只有一个朝向,“逝者如斯”,老人不能变年轻,打碎的花瓶无法复原,过去与未来的界限泾渭分明。
    不过,在物理学家眼中,时间却一直被视为是可逆转的。比如说一对光子碰撞产生一个电子和一个正电子,而正负电子相遇则同样产生一对光子,这两个过程都符合基本物理学定律,在时间上是对称的。如果用摄像机拍下其中一个过程然后播放,观看者将不能判断录像带是在正向还是逆向播放——从这个意义上说,时间没有了方向。
    但这个意义并不严谨,因为我们不知道前提。即开始之前的环境。但时间没有方向是真的。过去是已成的事件,现在是正在发生的事件,未来是还没有发生的事件。时间是这个过程的度量。但不显示箭头。

    对称性被破坏是事物不断发展进化、变得丰富多彩的原因。

    相关文章

      网友评论

        本文标题:宇称不守恒

        本文链接:https://www.haomeiwen.com/subject/rfnrpktx.html