常见的action操作
collect
collect:将分布式存储在集群上的分布式数据集(比如dataset),中的所有数据都获取到driver端来
count
count:对dataset中的记录数进行统计个数的操作
first
first:获取数据集中的第一条数据
foreach
foreach:遍历数据集中的每一条数据,对数据进行操作,这个跟collect不同,collect是将数据获取到driver端进行操作
foreach是将计算操作推到集群上去分布式执行
foreach(println(_))这种,真正在集群中执行的时候,是没用的,因为输出的结果是在分布式的集群中的,我们是看不到的
reduce
reduce:对数据集中的所有数据进行归约的操作,多条变成一条
show
show,默认将dataset数据打印前20条
take
take,从数据集中获取指定条数
数据
employee.json
{"name": "Leo", "age": 25, "depId": 1, "gender": "male", "salary": 20000}
{"name": "Marry", "age": 30, "depId": 2, "gender": "female", "salary": 25000}
{"name": "Jack", "age": 35, "depId": 1, "gender": "male", "salary": 15000}
{"name": "Tom", "age": 42, "depId": 3, "gender": "male", "salary": 18000}
{"name": "Kattie", "age": 21, "depId": 3, "gender": "female", "salary": 21000}
{"name": "Jen", "age": 30, "depId": 2, "gender": "female", "salary": 28000}
{"name": "Jen", "age": 19, "depId": 2, "gender": "female", "salary": 8000}
代码
object ActionOperation {
def main(args: Array[String]): Unit = {
val sparkSession= SparkSession
.builder()
.master("local")
.appName("ActionOperationScala")
.getOrCreate()
import sparkSession.implicits._
import org.apache.spark.sql.functions._
val employeePath = this.getClass.getClassLoader.getResource("employee.json").getPath
val employeeDF = sparkSession.read.json(employeePath)
employeeDF.collect().map(println(_))
println(employeeDF.first())
println(employeeDF.count())
employeeDF.foreach(println(_))
println(employeeDF.map(employee => 1).reduce(_ + _))
employeeDF.take(3).foreach(println(_))
}
}
网友评论