美文网首页机器学习与数据挖掘大数据,机器学习,人工智能机器学习
线性判别分析(LDA)算法原理分析与实现(二分类问题)

线性判别分析(LDA)算法原理分析与实现(二分类问题)

作者: 牛顿学计算机 | 来源:发表于2018-10-25 12:31 被阅读10次

    LDA的基本思想

    ~~~~~给定训练样本,设法将样本投影到一条直线上,使得同类样例的投影点尽可能的接近,异类样例的投影点尽可能的远。在对新样本进行分类时,将其投影到同样的这条直线上,再根据新样本投影点的位置确定类别。

    二维示意图.PNG
    也就是让同类样本的投影点尽量集中再一块,不同样本的投影点尽量分离。

    LDA算法原理

    ~~~~~下面我就简单分析一下该算法,详细可参考周志华老师的《机器学习》这本书,讲得很好。

    原理描述1.PNG
    原理描述2.PNG
    看到这里不禁会想到为什么要最大化(3.32)式子呢?
    根据协方差的计算公式:
    协方差公式.png
    要使同样例的投影点尽可能的接近,那么就需要X - E[X]的值要越小,也就是让协方差尽可能的小,所以要最小化
    投影点协方差.png
    而要让不同类别之间的距离尽可能的大,那么两个不同类的别均值向量在直线上的投影点之间的距离越大,已知均值向量在直线上的投影点是
    均值向量在直线上的投影点.png
    两个投影点之间的距离则是
    两个投影点之间的距离.png
    综合起来式子(3.32)就是最大化目标。
    继续看原理的推导
    散度矩阵.PNG
    原理3.PNG
    原理4.PNG

    LDA二分类算法的实现

    #二分类的LDA算法
    #输入数据:x1列向量
    #输入数据:x2列向量
    def LDA(x1, x2):
        n1 = shape(x1)[0]
        n2 = shape(x2)[0]
        m = n1
        print("m = ", m)
        x1_mean_vector = np.mean(x1.T)
        x2_mean_vector = np.mean(x2.T)
        print("x1_mean_vector = ", x1_mean_vector)
        print("x2_mean_vector = ", x2_mean_vector)
        sigma1 = (x1 - x1_mean_vector).T * (x1 - x1_mean_vector)
        sigma2 = (x2 - x2_mean_vector).T * (x2 - x2_mean_vector)
        Sw = sigma1 + sigma2
        print("Sw = ", Sw)
        w = Sw.I * (x1_mean_vector - x2_mean_vector)
        return w
    

    代码很简单,完完全全就是按照公式写的。

    完整代码

    from numpy import *
    import numpy as np
    import matplotlib.pyplot as plt
    import math
    
    #创建N*M个测试数据
    #输入数据:N 每一个类别的样例数量
    #输入数据:M 类别的数量
    def create_data(N, M):
        X = mat(zeros((N, M)))
        Y = mat(zeros((N, M)))
        k = 0
    
        for i in range(M):
            for j in range(N):
                X[j, i] = random.uniform(2 + k * 8, 8 + k * 8)
                Y[j, i] = (random.uniform(2, 15) + 10)
            k += 1
    
        return X,Y
    
    #二分类的LDA算法
    #输入数据:x1列向量
    #输入数据:x2列向量
    def LDA(x1, x2):
        n1 = shape(x1)[0]
        n2 = shape(x2)[0]
        m = n1
        print("m = ", m)
        x1_mean_vector = np.mean(x1.T)
        x2_mean_vector = np.mean(x2.T)
        print("x1_mean_vector = ", x1_mean_vector)
        print("x2_mean_vector = ", x2_mean_vector)
        sigma1 = (x1 - x1_mean_vector).T * (x1 - x1_mean_vector)
        sigma2 = (x2 - x2_mean_vector).T * (x2 - x2_mean_vector)
        Sw = sigma1 + sigma2
        print("Sw = ", Sw)
        w = Sw.I * (x1_mean_vector - x2_mean_vector)
        return w
    
    #显示图形
    def show_experiment_plot(X, Y, W):
        n,m = shape(X)
        x_label_data_list = arange(0, 30, 0.1)
        x_label_mat = mat(zeros((1, 300)))
    
        for i in range(300):
            x_label_mat[0, i] = x_label_data_list[i]
        y_label_mat = W * x_label_mat
       
        plt.plot(x_label_mat, y_label_mat, "ob")
        for i in range(m):
            if i % 2 == 1:
                plt.plot(X[:, i], Y[:, i], "or")
            else:
                plt.plot(X[:, i], Y[:, i], "og")
    
        plt.show()
    
    if __name__ == "__main__":
        x1,x2 = create_data(10, 2)
        w = LDA(x1[:, 0], x1[:, 1])
        print("W = ", w)
        show_experiment_plot(x1, x2, w)
        print("------------------------")
    

    实验结果

    实验结果1.PNG
    实验结果2.PNG

    相关文章

      网友评论

      • 教学平台杨教授:支持一下,消灭零评论:smile:
        教学平台杨教授:@幸福洋溢的季节 不谢,有空可以看看我的文章哦,如果想学更深度的知识,可以加我的微信(微信号详见我的作者简介),加入干货群哦:smile:
        牛顿学计算机::smile: 谢谢,评论也是一种支持

      本文标题:线性判别分析(LDA)算法原理分析与实现(二分类问题)

      本文链接:https://www.haomeiwen.com/subject/riuxtqtx.html