预置一些散点 使用Tensorflow拟合并用matplotlib展示出来
#coding=utf-8
import tensorflow as tf
import numpy
import matplotlib.pyplot as plt
if __name__ == '__main__':
rng = numpy.random
# 学习速率 迭代次数 50次迭代输出
learning_rate = 0.01
training_epochs = 8000
display_step = 50
# 训练数据
train_X = numpy.asarray(
[3.3, 4.4, 5.5, 6.71, 6.93, 4.168, 9.779, 6.182, 7.59, 2.167, 7.042, 10.791, 5.313, 7.997, 5.654, 9.27, 3.1])
train_Y = numpy.asarray(
[1.7, 2.76, 2.09, 3.19, 1.694, 1.573, 3.366, 2.596, 2.53, 1.221, 2.827, 3.465, 1.65, 2.904, 2.42, 2.94, 1.3])
n_samples = train_X.shape[0]
# tf Graph Input
X = tf.placeholder("float")
Y = tf.placeholder("float")
# 创建模型
# 变量权重和偏置值
W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias")
# 构建线性模型
activation = tf.add(tf.multiply(X, W), b)
# 最小平方误差
cost = tf.reduce_sum(tf.pow(activation - Y, 2)) / (2 * n_samples) # L2 loss
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # 随机梯度下降
# 初始化变量
init = tf.global_variables_initializer()
# 启动模型
with tf.Session() as sess:
sess.run(init)
# 训练
for epoch in range(training_epochs):
for (x, y) in zip(train_X, train_Y):
sess.run(optimizer, feed_dict={X: x, Y: y})
# 每display_step次输出查看
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch + 1), "cost=","{:.9f}".format(sess.run(cost, feed_dict={X: train_X, Y: train_Y})), "W=", sess.run(W), "b=", sess.run(b))
print("Optimization Finished!")
print("cost=", sess.run(cost, feed_dict={X: train_X, Y: train_Y}),"W=", sess.run(W), "b=", sess.run(b))
# 展示
plt.plot(train_X, train_Y, 'ro', label='Original data')
plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
plt.legend()
plt.show()
网友评论