美文网首页
IIR 切比雪夫型模拟低通滤波器设计原理

IIR 切比雪夫型模拟低通滤波器设计原理

作者: JeffreyLau | 来源:发表于2020-07-19 22:56 被阅读0次

    切比雪夫I型滤波器频域特性

    filter_design_cbi_001.png
    • 0 \leq \omega \leq \omega_c时,|H(j\omega)|^2在1和\frac{1}{1+\varepsilon}之间等幅振荡
    • \omega 大于\omega_c |H(j\omega)|^2单调下降,N越大下降的速度越快
    • |H(j\omega)|^2\omega = 0的值为:

    |H(j0)|^2 = \{^{1,N为奇数}_{1+\varepsilon,N为偶数}

    切比雪夫I型滤波器设计步骤

    步骤一:由通带截频\omega_p确定\omega_c

    \omega_p=\omega_c

    步骤二:由阻带衰减As确定\varepsilon :

            $\varepsilon = \sqrt{10^{0.1Ap - 1}}$
    

    步骤三:由通带、阻带指标确定N :

    N \ge \frac{arccosh(\frac{1}{\varepsilon}\sqrt{10^{0.1A_s} - 1})}{arccosh(\omega_s/\omega_h)}

    步骤四:由模方|H(jw)|^2求模拟低通滤波器的极点

    filter_design_cbi_002.png

    步骤5:由极点确定系统函数H(s)

    H_L(s) = \prod_{k=1}^N\frac{H(0)}{S-S_k} ,S_k = \sigma_k + j\omega_k,k=1,2,3 \ldots

    filter_design_cbi_003.png

    切比雪夫II型滤波器频域特性

    filter_design_cbi_004.png
    • |\omega| \leq \omega_c时,0 \leq |H(j\omega)|^2 \leq \frac{\varepsilon^2}{1+\varepsilon^2}
    • 对任意N,\omega_c和\varepsilon > 0 ,|H(0)| = 1
    • 在通带0 \leq \omega \leq \omega_c时,|H(j\omega)|^2单调下降

    切比雪夫II型滤波器设计步骤

    步骤一:由通带截频\omega_p确定\omega_c

    \omega_p=\omega_c

    步骤二:由阻带衰减As确定\varepsilon :

            $\varepsilon=\frac{1}{\sqrt(10^{0.1A_s} - 1)}$       
    

    步骤三:由通带、阻带指标确定N :

    N \ge \frac{arccosh(\frac{1}{\sqrt(10^{0.1A_s} - 1)})}{arccosh(\omega_s/\omega_h)}

    步骤四:由模方|H(jw)|^2求模拟低通滤波器的极点

    S_k = \sigma_k + j\omega_k,k=1,2,3 \ldots

    步骤5:由极点确定系统函数H(s)

    H_L(s) = \prod_{k=1}^N\frac{H(0)}{S-S_k}

    使用matlab求模拟低通滤波器的系统函数以及频率响应

    • 设计一个满足下列指标CBI型模拟低通滤波器fp=1KHz , fs=2KHz,Ap ≤1dB, As ≥40dB,求出其系统函数,并画出其频率响应特性图
    Wp=2*pi*1000;%将数字频率转换成模拟频率
    Ws=2*pi*2000;%将数字频率转换成模拟频率
    Ap=1;%最大通带衰耗
    As=40; % %最小阻带衰耗
    %求阶数和Wc
    [N,Wc]=cheb1ord(Wp,Ws,Ap,As,'s'); %Computer analog filter order
    fprintf('Order of the filter=%.0f\n',N)
    %求分之和分母系数
    [num,den] = cheby1(N,Ap,Wc,'s'); %Compute AF coefficients
    disp('Numerator polynomial'); 
    fprintf('%.4e\n',num);
    disp('Denominator polynomial'); 
    fprintf('%.4e\n',den);
    % 求Wp和Ws两点对应的频率响应
    omega=[Wp Ws]; 
    h = freqs(num,den,omega); %Compute Ap and As of the AF
    ap = -20*log10(abs(h(1)));% 将通带频率响应转换成衰耗值,
    as = -20*log10(abs(h(2)));% 将阻带频率响应转换成衰耗值,
    
    hp = abs(h(1));
    hs = abs(h(2));
    
    gain_p = 20*log10(abs(h(1))); 
    gain_s = 20*log10(abs(h(2))); 
    
    fprintf('Ap= %.4f\n',-20*log10(abs(h(1))));
    fprintf('As= %.4f\n',-20*log10(abs(h(2))));
    
    %求0~6000pi之间的频率响应
    omega = [0: 200: 3000*2*pi];
    h = freqs(num,den,omega); %Compute the frequency response of the AF
    subplot(211);
    
    plot(omega/(2*pi),abs(h),'LineWidth',3);%画出频率响应曲线
    hold on;%在画完函数虚线之后保持曲线图
    plot([0 Wp/(2*pi)],[hp hp],'r--'); %画两个虚线
    plot([Wp/(2*pi) Wp/(2*pi)],[0 hp],'r--');
    
    plot([0 Ws/(2*pi)],[hs hs],'r--'); %画两个虚线
    plot([Ws/(2*pi) Ws/(2*pi)],[0 hs],'r--');
    
    hold off;
    xlabel('Frequency in Hz'); 
    ylabel('H(jw)');
    
    gain=20*log10(abs(h)); 
    subplot(212);
    plot(omega/(2*pi),gain,'LineWidth',3);
    hold on;%在画完函数虚线之后保持曲线图
    plot([0 Wp/(2*pi)],[gain_p gain_p],'r--'); %画两个虚线
    plot([Wp/(2*pi) Wp/(2*pi)],[0 gain_p],'r--');
    
    plot([0 Ws/(2*pi)],[gain_s gain_s],'r--'); %画两个虚线
    plot([Ws/(2*pi) Ws/(2*pi)],[0 gain_s],'r--');
    
    hold off;
    
    xlabel('Frequency in Hz'); 
    ylabel('Gain in dB');
    
    • 得到其图像如下


      filter_design_cbi_005.png
    • 其系数如下:

    Order of the filter=5 %5阶滤波器
    Numerator polynomial
    0.0000e+00
    0.0000e+00
    0.0000e+00
    0.0000e+00
    0.0000e+00
    1.2028e+18
    Denominator polynomial
    1.0000e+00
    5.8862e+03
    6.6672e+07
    2.4170e+11
    9.0479e+14
    1.2028e+18
    Ap= 1.0000
    As= 45.3060
    
    • 使用matlab分析其零极点分布情况
    num=[1.2028e+18];
    den=[1.0000e+00 5.8862e+03 6.6672e+07 2.4170e+11 9.0479e+14 1.2028e+18];
    subplot(211);
    sys=tf(num,den);%求出系统的零极点
    pzmap(sys,'r');%画出系统零极点
    grid on
    subplot(212);
    omega = [0: 200: 3000*2*pi];
    H=freqs(num,den,omega);%得到频率响应
    plot(omega/(2*pi),abs(H),'LineWidth',3);%画出频率响应
    xlabel('Frequency Hz');
    title('Magnitude Respone');
    
    filter_design_cbi_006.png
    • 由图可知极点的分布都在S平面的左半平面,说明是系统稳定
    • N=5为奇数,一共有5个极点,和上面理论分析互相匹配

    相关文章

      网友评论

          本文标题:IIR 切比雪夫型模拟低通滤波器设计原理

          本文链接:https://www.haomeiwen.com/subject/rlldkktx.html