继上一篇《(27)Go实现邻接矩阵和邻接表无权图》后续:
https://www.jianshu.com/p/ad9fed1836d9
邻接矩阵实现有权图
// 边类
type Edge struct {
a int //a节点
b int //b节点
weight float64 //权值
}
func newEdge(a, b int, weight float64) *Edge {
return &Edge{
a: a,
b: b,
weight: weight,
}
}
// 比较两个边的权值
func lessWeight(a, b *Edge) bool {
return a.weight <= b.weight
}
// 有权稠密图 - 邻接矩阵
type weightedDenseGraph struct {
n int //节点数
m int //边数
directed bool //有向图 or 无向图
graph [][]*Edge
}
// 构造函数:有n个顶点,有向 or 无向图
func NewWeightDenseGraph(n int, directed bool) *weightedDenseGraph {
// 初始化 n*n 的二维切片矩阵
buf := make([][]*Edge, n)
for i := 0; i < n; i++ {
buf[i] = make([]*Edge, n)
}
return &weightedDenseGraph{
n: n,
m: 0,
directed: directed,
graph: buf,
}
}
// 获取顶点数量
func (d weightedDenseGraph) GetVertex() int {
return d.n
}
// 获取边数量
func (d weightedDenseGraph) GetEdge() int {
return d.m
}
// 添加边: v1,v2均表示顶点相应的索引
func (d *weightedDenseGraph) AddEdge(v1, v2 int, weight float64) error {
b, err := d.HasEdge(v1, v2)
if err != nil {
return err
}
// 包含两种情况:有边则覆盖原先的边,无边则新添加边
d.graph[v1][v2] = newEdge(v1, v2, weight)
if !d.directed {
// 如果是无向图,v2 -> v1也要表示有边
d.graph[v2][v1] = newEdge(v2, v1, weight)
}
// 如果本来没有边,边数量+1
if !b {
d.m++
}
return nil
}
// 判断v1,v2是否已经有边
func (d *weightedDenseGraph) HasEdge(v1, v2 int) (bool, error) {
// 判断索引是否越界
if v1 < 0 || v2 < 0 || v1 >= d.n || v2 >= d.n {
return false, errors.New("index is illegal.")
}
return d.graph[v1][v2] != nil, nil
}
// 迭代器: 输出节点v所连接的节点,时间复杂度为O(n)
func (d *weightedDenseGraph) Iterator(v int) []*Edge {
// 判断索引是否越界
if v < 0 || v >= d.n {
fmt.Println("index is illegal.")
return nil
}
var buf []*Edge
for _, j := range d.graph[v] {
if j != nil {
buf = append(buf, j)
}
}
return buf
}
// 打印边
func PrintEdge(e []*Edge) {
buf := make([]Edge, len(e))
for i1, i2 := range e {
if i2 != nil {
buf[i1] = *i2
}
}
fmt.Println(buf)
}
邻接表实现有权图
// 边类
type Edge struct {
a int //a节点
b int //b节点
weight float64 //权值
}
func newEdge(a, b int, weight float64) *Edge {
return &Edge{
a: a,
b: b,
weight: weight,
}
}
// 稀疏图 - 邻接表
type sparseGraph struct {
n int // 节点数
m int // 边数量
directed bool //有向 or 无向图
graph [][]*Edge
}
func NewWeightSparseGraph(n int, directed bool) *sparseGraph {
buf := make([][]*Edge, n)
return &sparseGraph{
n: n,
m: 0,
directed: directed,
graph: buf,
}
}
// 获取顶点数量
func (s *sparseGraph) GetVertex() int {
return s.n
}
// 获取边数量
func (s *sparseGraph) GetEdge() int {
return s.m
}
// 添加边: v1,v2均表示顶点相应的索引
func (s *sparseGraph) AddEdge(v1, v2 int, weight float64) error {
// 判断索引是否越界
if v1 < 0 || v2 < 0 || v1 >= s.n || v2 >= s.n {
return errors.New("index is illegal.")
}
// 不处理平行边的情况
s.graph[v1] = append(s.graph[v1], newEdge(v1, v2, weight))
if v1 != v2 && !s.directed {
s.graph[v2] = append(s.graph[v2], newEdge(v2, v1, weight))
}
s.m++
return nil
}
// 判断v1,v2是否已经有边
func (s *sparseGraph) HasEdge(v1, v2 int) (bool, error) {
// 判断索引是否越界
if v1 < 0 || v2 < 0 || v1 >= s.n || v2 >= s.n {
return false, errors.New("index is illegal.")
}
for _, v := range s.graph[v1] {
if v.b == v2 {
return true, nil
}
}
return false, nil
}
// 迭代器: 输出节点v所连接的节点,时间复杂度为O(1)
func (s *sparseGraph) Iterator(v int) []*Edge {
// 判断索引是否越界
if v < 0 || v >= s.n {
fmt.Println("index is illegal.")
return nil
}
return s.graph[v]
}
func PrintEdge(e []*Edge) {
buf := []Edge{}
for _, i2 := range e {
buf = append(buf, *i2)
}
fmt.Println(buf)
}
测试
func d_Test() {
rand.Seed(time.Now().UnixNano())
d := weightDenseGraph.NewWeightDenseGraph(10, false)
for i := 0; i < 20; i++ {
d.AddEdge(rand.Intn(10), rand.Intn(10), 0)
}
for i := 0; i < 10; i++ {
a := d.Iterator(i)
weightDenseGraph.PrintEdge(a)
}
}
func s_Test() {
rand.Seed(time.Now().UnixNano())
d := weightSparseGraph1.NewWeightSparseGraph(10, false)
for i := 0; i < 20; i++ {
d.AddEdge(rand.Intn(10), rand.Intn(10), 0)
}
for i := 0; i < 10; i++ {
a := d.Iterator(i)
weightSparseGraph1.PrintEdge(a)
}
}
func main() {
fmt.Println("邻接表有权图")
s_Test()
fmt.Println("========")
fmt.Println("邻接矩阵无权图")
d_Test()
}
测试结果 //
邻接表有权图
[{0 4 0} {0 9 0} {0 4 0} {0 3 0} {0 9 0} {0 4 0}]
[{1 3 0} {1 1 0} {1 1 0} {1 4 0} {1 8 0} {1 7 0}]
[{2 8 0} {2 6 0}]
[{3 1 0} {3 0 0}]
[{4 7 0} {4 0 0} {4 0 0} {4 1 0} {4 0 0}]
[{5 8 0} {5 7 0}]
[{6 2 0} {6 8 0}]
[{7 4 0} {7 5 0} {7 1 0}]
[{8 2 0} {8 5 0} {8 9 0} {8 9 0} {8 1 0} {8 6 0}]
[{9 0 0} {9 8 0} {9 0 0} {9 8 0}]
========
邻接矩阵无权图
[{0 0 0} {0 1 0} {0 3 0} {0 7 0} {0 9 0}]
[{1 0 0} {1 3 0} {1 4 0} {1 7 0}]
[{2 9 0}]
[{3 0 0} {3 1 0} {3 4 0} {3 9 0}]
[{4 1 0} {4 3 0} {4 8 0}]
[{5 5 0} {5 9 0}]
[]
[{7 0 0} {7 1 0} {7 8 0}]
[{8 4 0} {8 7 0} {8 9 0}]
[{9 0 0} {9 2 0} {9 3 0} {9 5 0} {9 8 0}]
总结:邻接矩阵有序,邻接表无序,邻接矩阵遍历时间复杂度O(n),邻接表遍时间复杂度O(1) //
有bug欢迎指出,转载请注明出处。
网友评论