1 单因素COX和多因素COX
clinical.txtlibrary(survival)
rt=read.table("clinical.txt",header=T,sep="\t",check.names=F,row.names=1)
#单因素cox
uniTab=data.frame()
for(i in colnames(rt[,3:ncol(rt)])){
cox <- coxph(Surv(futime, fustat) ~ rt[,i], data = rt)
coxSummary = summary(cox)
uniTab=rbind(uniTab,
cbind(id=i,
HR=coxSummary$conf.int[,"exp(coef)"],
HR.95L=coxSummary$conf.int[,"lower .95"],
HR.95H=coxSummary$conf.int[,"upper .95"],
pvalue=coxSummary$coefficients[,"Pr(>|z|)"])
)
}
write.table(uniTab,file="uniCox.txt",sep="\t",row.names=F,quote=F)
#多因素cox
multiCox=coxph(Surv(futime, fustat) ~ ., data = rt)
multiCoxSum=summary(multiCox)
multiTab=data.frame()
multiTab=cbind(
HR=multiCoxSum$conf.int[,"exp(coef)"],
HR.95L=multiCoxSum$conf.int[,"lower .95"],
HR.95H=multiCoxSum$conf.int[,"upper .95"],
pvalue=multiCoxSum$coefficients[,"Pr(>|z|)"])
multiTab=cbind(id=row.names(multiTab),multiTab)
write.table(multiTab,file="multiCox.txt",sep="\t",row.names=F,quote=F)
uniCox.txt
2 绘制森林图
R-forestplot包| HR结果绘制森林图
R语言 | forestplot包绘制森林图
2.1 载入数据
#载入R包
library(forestplot)
#就从这个网站下载数据
#数据来源:https://www.r-bloggers.com/forest-plot-with-horizontal-bands/
data <- read.csv("ForestPlotData.csv", stringsAsFactors=FALSE)
#查看数据
head(data)
ForestPlotData.csv
2.2 简单森林图绘制
## 构建tabletext,更改列名称,展示更多信息
np <- ifelse(!is.na(data$Count), paste(data$Count," (",data$Percent,")",sep=""), NA)
## The rest of the columns in the table.
tabletext <- cbind(c("Subgroup","\n",data$Variable),
c("No. of Patients (%)","\n",np),
c("4-Yr Cum. Event Rate\n PCI","\n",data$PCI.Group),
c("4-Yr Cum. Event Rate\n Medical Therapy","\n",data$Medical.Therapy.Group),
c("P Value","\n",data$P.Value))
##绘制森林图
forestplot(labeltext=tabletext, graph.pos=3,
mean=c(NA,NA,data$Point.Estimate),
lower=c(NA,NA,data$Low), upper=c(NA,NA,data$High),
boxsize=0.5)
2.3 优化森林图
## 定义亚组,方便后面线条区分
subgps <- c(4,5,8,9,12,13,16,17,20,21,24,25,28,29,32,33)
data$Variable[subgps] <- paste(" ",data$Variable[subgps])
forestplot(labeltext=tabletext,
graph.pos=3, #为Pvalue箱线图所在的位置
mean=c(NA,NA,data$Point.Estimate),
lower=c(NA,NA,data$Low), upper=c(NA,NA,data$High),
#定义标题
title="Hazard Ratio Plot",
##定义x轴
xlab=" <---PCI Better--- ---Medical Therapy Better--->",
##根据亚组的位置,设置线型,宽度造成“区块感”
hrzl_lines=list("3" = gpar(lwd=1, col="#99999922"),
"7" = gpar(lwd=60, lineend="butt", columns=c(2:6), col="#99999922"),
"15" = gpar(lwd=60, lineend="butt", columns=c(2:6), col="#99999922"),
"23" = gpar(lwd=60, lineend="butt", columns=c(2:6), col="#99999922"),
"31" = gpar(lwd=60, lineend="butt", columns=c(2:6), col="#99999922")),
#fpTxtGp函数中的cex参数设置各个组件的大小
txt_gp=fpTxtGp(label=gpar(cex=1.25),
ticks=gpar(cex=1.1),
xlab=gpar(cex = 1.2),
title=gpar(cex = 1.2)),
##fpColors函数设置颜色
col=fpColors(box="#1c61b6", lines="#1c61b6", zero = "gray50"),
#箱线图中基准线的位置
zero=1,
cex=0.9, lineheight = "auto",
colgap=unit(8,"mm"),
#箱子大小,线的宽度
lwd.ci=2, boxsize=0.5,
#箱线图两端添加小竖线,高度
ci.vertices=TRUE, ci.vertices.height = 0.4)
image.png
网友评论