全景图
1对1特征匹配
1对1的特征匹配k对最佳匹配
k对最佳匹配随机抽样一致算法 RANSAC
最小2乘 VS RANSAC
n = 2 我们就随机选取 2 个点,因为两个点可以确定一条直线,inline outline 点
import cv2
import numpy as np
class Stitcher:
#
def stitch(self,images,ratio=0.75,reprojThresh=4.0,showMatches=False):
(imageA, imageB) = images
print imageA
(kpsA,featuresA) = self.detectAndDescribe(imageA)
(kpsB,featuresB) = self.detectAndDescribe(imageB)
M = self.matchKeypoints(kpsA,kpsB,featuresA,featuresB,ratio,reprojThresh)
if M is None:
return None
(matches, H, status) = M
result = cv2.warpPerspective(imageA,H,(imageA.shape[1] + imageB.shape[1],imageA.shape[0]))
cv2.imshow("res",result)
cv2.waitKey(1)
cv2.destroyAllWindows()
result[0:imageB.shape[0],0:imageB.shape[1]] = imageB
if showMatches:
pass
# vis = self.drawMatches(imageA,imageB,kpsA,kpsB,matches,status)
return result
def detectAndDescribe(self,image):
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
sift = cv2.xfeatures2d.SIFT_create()
(kps,features) = sift.detectAndCompute(gray,None)
kps = np.float32([kp.pt for kp in kps])
return (kps,features)
def matchKeypoints(self,kpsA,kpsB,featuresA,featuresB,ratio,reprojThresh):
matcher = cv2.BFMatcher()
rawMatches = matcher.knnMatch(featuresA,featuresB,2)
matches = []
for m in rawMatches:
if len(m) == 2 and m[0].distance < m[1].distance * ratio:
matches.append((m[0].trainIdx,m[0].queryIdx))
if len(matches) > 4:
ptsA = np.float32([kpsA[i] for (_,i) in matches])
ptsB = np.float32([kpsB[i] for (i,_) in matches])
(H,status) = cv2.findHomography(ptsA,ptsB,cv2.RANSAC,reprojThresh)
return (matches, H, status)
网友评论