美文网首页
高斯定理

高斯定理

作者: 湛卢今天被禁言了吗 | 来源:发表于2019-04-10 17:31 被阅读0次

平面、球、圆柱带电体的场强:高斯定理

知识点


  • 电通量

  • 高斯定理

    • 高斯面
    • 矢量积分转化为标量积分
    • Q_内
  • 平面对称的电场

  • 球对称带电体的电场

    • (a)做通过某场点的同心球面作为高斯面,随后将对该面应用高斯定理:\oint\vec{E}\cdot d\vec{S}=\frac{Q_{\text{内}}}{\epsilon_{0}}

    • (b)公式中Q_{\text{内}}是指的这个高斯面所包围的体积内部的总电量。一定要想清楚电荷到底是如何分布的。在复杂的问题中,往往需要借助电荷密度来求解。

    • (c) 设该场点的电场强度,大小为E,则该面的电通量必然为E\cdot4\pi r^{2},其中4\pi r^{2}是高斯球面的面积。

    • (d)于是得到核心方程:E\cdot4\pi r^{2}=\frac{Q_{\text{内}}}{\epsilon_{0}},解出E 即可。

  • 轴对称带电体的电场

    • (a)通过该场点做同轴圆柱作为高斯面,随后将对该面应用高斯定理:\oint\vec{E}\cdot d\vec{S}=\frac{Q_{\text{内}}}{\epsilon_{0}}
    • (b)公式中Q_{\text{内}}是指的这个高斯面所包围的体积内部的总电量。一定要想清楚电荷到底是如何分布的。在复杂的问题中,往往需要借助电荷密度来求解。
    • (c) 设该场点的电场强度,大小为E,则该面的电通量必然为E\cdot2\pi rh,其中2\pi rh是高斯面(圆柱)的侧面积。
    • (d)于是得到核心方程:E\cdot2\pi rh=\frac{Q_{\text{内}}}{\epsilon_{0}},解出E 即可。

表达题


  • 一个非闭合面的电通量,其直观物理意义是贯穿某个面(比如一张纸,一面是红色,一面是黑色)的电场线的条数。注意,这里的贯穿,是指的从一面红色,从黑色穿出;即:电场线必须跟那张纸发生“交叉”,而不能是平行。则在匀强电场(E)中,如图所示的半径为R,高度为H的半圆筒,圆筒的轴线与电场线平行。则其电通量为( )

解答:0

  • 一个闭合面的电通量,其直观物理意义是穿出、穿入它的电场线的次数。注意,穿出为正贡献、穿入为负贡献。则如图所示,,则其电通量为( )

解答:0

  • 匀强电场中,平面的电通量的计算式为:

Φ_e=ESsin\theta

  • 电通量的积分表达式为:

Φ_e=\oint\vec{E}\cdot d\vec{S}

  • 高斯定理的公式是\oint\vec{E}\cdot d\vec{S}=\frac{Q}{\epsilon_{0}}。如图所示有三个点电荷,分别为q_{1},q_{2},q_{3}。我们画一个封闭的曲面,将q_{1},q_{2}围在里面,而让q_{3}呆在该封闭曲面的外围。在此情形下,请分析高斯定理中的各项。

解答:封闭曲面的通量跟内部电荷有关,跟外电荷无关。
Q=q_1+q_2
根据场强叠加原理,任一点的\vec{E}​跟内外电荷都有关。


  • 所有无限大的均匀带电的平面或平板,以及由它们彼此平行合成的各种组合体,均简称“平面带电体”。画图描述这类带电体的场强特征:

解答:场强具有对称性,场强方向垂直于带点平面(板),平行于该平面(板)的平面上的场强大小相等。


QQ图片20190410171033.png
  • 任何无限大均匀带电平板,做图示的高斯面,则其通量\oint\vec{E}\cdot d\vec{S}计算出来必然为

解答:2E\Delta S

  • “平板带电体”求电场\vec{E}的思路是:(a)通过某场点,在平板两边对称地做一个圆柱型表面作为高斯面,随后将对该面应用高斯定理:\oint\vec{E}\cdot d\vec{S}=\frac{Q_{\text{内}}}{\epsilon_{0}}
    (b)公式中Q_{\text{内}} 指的这个高斯面所包围的体积内部的总电量。一定要想清楚电荷到底是如何分布的。在复杂的问题中,往往需要借助电荷密度来求解。
    (c) 设该场点的电场强度,大小为E,则该面的电通量必然为2ES,其中S是圆柱型表面的底面积。
    (d)于是得到核心方程:2ES=\frac{Q_{\text{内}}}{\epsilon_{0}},解出E 即可。
    现在有一个均匀带电的平板,电量体密度为\rho,平板的厚度是D。我们想求出该平板外部,距离中心为x处的场点的电场(x>D/2)。我们过该点,做图示的高斯面。设该点电场大小为E,则核心方程可能为:

解答:2E\Delta S=\frac{\rho D}{\varepsilon_0}\Delta S

  • 现在有一个均匀带电的平板,电量体密度为\rho,平板的厚度是D。我们想求出该平板内部,距离中心为x处的场点的电场(x<D/2)。我们过该点,做图示的高斯面。设该点电场大小为E,则核心方程可能为:

解答:2E\Delta S=\frac{\rho 2x}{\varepsilon_0}\Delta S

  • 无限大均匀带电平面,电荷面密度为\sigma,则其电场为

解答:E=\frac{\sigma}{2\varepsilon_0}

  • 组合带电体的场强请用叠加原理。考虑如图的“组合带电体”:由一个平面(电荷面密度\sigma)和一个平板(电荷体密度\rho)进行平行组合而成。则P点的场强为( )

解答:E=E_1+E_2=\frac{\rho D}{2\varepsilon_0}+\frac{\sigma}{2\varepsilon_0}=\frac{\rho D+\sigma}{2\varepsilon_0}


  • 所有均匀带电的球体,球壳,球面,以及由它们合成的各种“同心”组合体,均叫做“球对称带电体”。请画图表示这类带电体的场强特征

提示:距离球心为r的各点,场强的大小都相等,并且方向一定在径向(球心——场点连线方向)上。

  • 某半径为R的均匀带电实心球体,设某场点到球心的距离是r,场强的大小是E。现在做半径为r的虚拟球面(高斯面),则该面的电通量\oint\vec{E}\cdot d\vec{S}为( )

解答:4\pi R^2E

  • 现在有一个均匀带电的球壳,总电量为Q,球壳的半径是R,球壳厚度可以忽略。我们想求出该球壳内部,距离球心为rM处的电场(r<R)。我们过该点,做半径为r 的同心球面作为高斯面。设该点电场大小为E,则核心方程可能为:
    (1) E\cdot4\pi r^{2}=\frac{0}{\epsilon_{0}}
    (2) E\cdot4\pi r^{2}=\frac{Q}{\epsilon_{0}}
    (3) E\cdot4\pi r^{2}=\frac{Qr^{2}}{\epsilon_{0}R^{2}}
    (4) E\cdot4\pi r^{2}=\frac{Qr}{\epsilon_{0}R}
    解出电场来,观察其规律可能为:(请理解、归纳、记忆)
    (5) 均匀带电的薄球壳,内部场强为零。
    (6) 均匀带电的薄球壳,内部场强不为零。
    进而借助叠加原理思考:有厚度的空心带电球体,空腔里的场强为
    (7) 零。
    (8) 不一定。
    则正确的是( )

解答:(1)(5)(7)

  • 现在有一个均匀带电的球壳,总电量为Q,球壳的半径是R,球壳厚度可以忽略。我们想求出该球壳外部,距离球心为rN处的电场(r>R)。我们过该点,做半径为r的同心球面作为高斯面。设该点电场大小为E,则核心方程可能为:
    (1) E\cdot4\pi r^{2}=\frac{Q}{\epsilon_{0}}
    (2) E\cdot4\pi r^{2}=\frac{0}{\epsilon_{0}}
    (3) E\cdot4\pi r^{2}=\frac{Qr^{2}}{\epsilon_{0}R^{2}}
    (4) E\cdot4\pi r^{2}=\frac{Qr}{\epsilon_{0}R}
    解出电场来,观察其规律可能为:(请理解、归纳、记忆):均匀带电薄球壳的外部场强,( )等效为球心处放一个等电量的点电荷所产生的电场。
    (5) 能
    (6) 不能
    进而借助叠加原理思考:有厚度的空心带电球体,球外的场强,( )等效为球心处放一个等电量的点电荷所产生的电场。
    (7) 能
    (8) 不能。
    则正确的是( )

解答:(1)(5)(7)

  • 现在有一个均匀带电的球体,总电量为Q,球的半径是R。我们想求出该球体外部,距离球心为rN 处的电场(r>R)。我们过该点,做半径为r的同心球面作为高斯面。设该点电场大小为E,则核心方程可能为:
    (1) E\cdot4\pi r^{2}=\frac{Q}{\epsilon_{0}}
    (2) E\cdot4\pi r^{2}=\frac{0}{\epsilon_{0}}
    (3) E\cdot4\pi r^{2}=\frac{Qr^{2}}{\epsilon_{0}R^{2}}
    (4) E\cdot4\pi r^{2}=\frac{Qr}{\epsilon_{0}R}
    解出电场来,观察其规律可能为:(请理解、归纳、记忆)
    (5) 均匀带电球体的外部场强,等效为球心处放一个等电量的点电荷所产生的电场。

    (6) 均匀带电球体的外部场强,不等效为球心处放一个等电量的点电荷所产生的电场。

    则正确的是( )

解答:(1)(5)

  • 现在有一个均匀带电的球体,总电量为Q,球的半径是R。我们想求出该球体内部,距离球心为rM处的电场(r<R)。我们过该点,做半径为r的同心球面作为高斯面。设该点电场大小为E,则核心方程可能为:
    (1) E\cdot4\pi r^{2}=\frac{Q_{\text{内}}}{\epsilon_{0}}, Q_{\text{内}}=\frac{Q}{\frac{4}{3}\pi R^{3}}\cdot\frac{4}{3}\pi r^{3}=Q\cdot(\frac{r}{R})^{3}
    (2) E\cdot4\pi r^{2}=\frac{0}{\epsilon_{0}}
    (3) E\cdot4\pi r^{2}=\frac{4r^{2}}{\epsilon_{0}R^{2}}
    (4) E\cdot4\pi r^{2}=\frac{4r}{\epsilon_{0}R}
    结合以上求解过程知,均匀带电球体内部某场点的场强,可等效为( _ )集中到球心时产生的电场。(请理解、归纳、记忆)
    (5) 所有电荷。
    (6) 高斯面内所有电荷。
    则正确的是( )

解答:(1)(6)

  • 组合带电体的场强请用叠加原理。在上面几道题中,我们总结归纳了几条直观经验,具体地:
    (1) 均匀带电的薄球壳,内部场强为零。
    (2) 均匀带电薄球壳的外部场强,等效为球心处放一个等电量的点电荷所产生的电场。
    (3) 均匀带电球体的外部场强,等效为球心处放一个等电量的点电荷所产生的电场。
    (4)均匀带电球体的内部某场点的场强,可等效为高斯面内所有电荷集中到球心时产生的电场。
    结合以上四点,考虑如图的“组合带电体”:由一个实心带电球体和一个空心带电球壳进行同心组合而成。其中,实心球体电量为Q_{1},球壳电量为Q_{2}。应用点电荷公式和叠加原理,得带电体外部场点M处的电场大小为:

解答:(1) ,E=\frac{Q_1+Q_2}{\epsilon_{0}4\pi r^{2}}

  • 结合以上四点,考虑如图的“组合带电体”:由一个实心带电球体和一个空心带电球壳进行同心组合而成。其中,实心球体电量为Q_{1},球壳电量为Q_{2}。应用点电荷公式和叠加原理,得空腔中场点P处电场大小为:

解答:E=\frac{Q_1-Q_2}{\epsilon_{0}4\pi r^{2}}

  • 如图的“组合带电体”:由一个实心带电球体和一个空心带电球壳进行同心组合而成。其中,实心球体电量为Q_{1},球壳电量为Q_{2}。应用点电荷公式和叠加原理,得球内部场点N处的场强电场大小为E为:

解答:E\cdot4\pi r^{2}=\frac{Q_{\text{内}}}{\epsilon_{0}}, Q_{\text{内}}=\frac{Q}{\frac{4}{3}\pi R^{3}}\cdot\frac{4}{3}\pi r^{3}=Q\cdot(\frac{r}{R})^{3}


  • 所有无限长、均匀带电的细杆、空心圆筒、实心圆柱,以及由它们合成的各种“同轴”组合体,均叫做“圆柱型带电体”。请图示这类带电体的场强特征。

提示:距离轴线为r的各点,场强的大小都相等,并且方向一定与轴线垂直。

QQ图片20190410173046.png
  • 某圆柱型带电体(红色),设某场点到轴线的距离是r,场强的大小是E。现在过该场点做一个高度为h的虚拟圆柱(蓝色,高斯面),则该面的电通量\oint\vec{E}\cdot d\vec{S}为:( )

解答:2\pi rhE

  • 现在有一个无限长、均匀带电的细棒,电荷线密度为\lambda。我们想求出距离轴线(即细棒的中心线)为rM处的电场。我们过该点,做高度为h的同轴圆柱。设该点电场大小为E,则核心方程可能为:

解答:E=2\pi rh\lambda

  • 现在有一个无限长、均匀带电、半径为R的圆柱体,电荷体密度为\rho。我们想求出带电体外部、距离轴线(即圆柱的中心线)为rM处的电场(r>R)。我们过该点,做高度为h的同轴圆柱面。设该点电场大小为E,则核心方程为:

解答:2\pi rhE=\frac{\pi R^2h\rho}{\epsilon_0}

  • 现在有一个无限长、均匀带电、半径为R的圆柱体,电荷体密度为\rho。我们想求出圆柱带电体内部、距离轴线(即圆柱的中心线)为rM处的电场(r<R)。我们过该点,做高度为h的同轴圆柱。设该点电场大小为E,则核心方程为:

解答:2\pi rhE=\frac{\pi r^2h\rho}{\epsilon_0}


相关文章

  • 高斯定理

    1.电力线(电场线) 用一族空间曲线形象描述场强分布 通常把这些曲线称为电场线(electricfieldline...

  • 高斯定理

    平面、球、圆柱带电体的场强:高斯定理 知识点 电通量 高斯定理高斯面矢量积分转化为标量积分 平面对称的电场 球对称...

  • 第15讲by王畅

    平面、球、圆柱带电体的场强:高斯定理 知识点 电通量 高斯定理高斯面矢量积分转化为标量积分 平面对称的电场 球对称...

  • 第十五讲 平面、球、圆柱带电体的场强:高斯定理 by 赵常青

    平面、球、圆柱带电体的场强:高斯定理 知识点 电通量 高斯定理;高斯面矢量积分转化为标量积分 平面对称的电场 球对...

  • markdown15 高斯定理by阮道杰

    平面、球、圆柱带电体的场强:高斯定理 知识点 电通量 高斯定理高斯面矢量积分转化为标量积分 平面对称的电场 球对称...

  • 重读高中物理(Ⅸ):高斯定理和环路定理

    静电场的高斯定理和静磁场的环路定理提供了计算电场强度和磁感应强度的强有力工具,这是高中物理望尘莫及的。 高斯定理在...

  • 高斯定理(by小毅)

    平面、球、圆柱带电体的场强:高斯定理 知识点 1. 电场线 在电场中引入的一些假想的曲线。曲线上每一点的切线方向和...

  • 平面、球、圆柱的电势

    平面、球、圆柱的电势 知识点 单体(1) 借助高斯定理,求出场强。注意一般是分段函数。(2) 从关心的场点向零势能...

  • 电势(by小毅)

    平面、球、圆柱的电势 知识点 单体(1) 借助高斯定理,求出场强。注意一般是分段函数。(2) 从关心的场点向零势能...

  • markdown16 高斯定理vs 电势by阮道杰

    平面、球、圆柱的电势 知识点 单体(1) 借助高斯定理,求出场强。注意一般是分段函数。(2) 从关心的场点向零势能...

网友评论

      本文标题:高斯定理

      本文链接:https://www.haomeiwen.com/subject/rqrpbqtx.html