一、定义
对于长度为n的文本串T[1...n],T的后缀是指从第i个字符开始到T的末尾所形成的子串T[i...n],1 ≤ i ≤ n ;
1-1-1 字符串的后缀而后缀数组就是对文本串T的所有后缀排序后得到的字符串数组。
特点:原字符串中的任意子串都是后缀数组中的某个后缀字符串的前缀
API定义:
1-1-3 后缀数组的API定义二、实现
2.1 数据结构定义
由于实际应用中,文本字符串很大(对于长度为N的文本字符串,其后缀数组大小为N),如果将文本的每个后缀字符串都直接保存到后缀数组中,会占用大量空间,所以可以仅保存每个后缀数组在原文本串中的起始索引。
后缀数组定义:
public class SuffixArray {
private Suffix[] suffixes;
public SuffixArray(String text) {
int n = text.length();
this.suffixes = new Suffix[n];
for (int i = 0; i < n; i++)
suffixes[i] = new Suffix(text, i);
Arrays.sort(suffixes);
}
/**
* 内部类,主要起优化作用,避免保存大量后缀字符串
*/
private static class Suffix implements Comparable<Suffix> {
private final String text; // 原文本串
private final int index; // 在原文本串中的起始索引
private Suffix(String text, int index) {
this.text = text;
this.index = index;
}
private int length() {
return text.length() - index;
}
// 返回当前后缀字符串的第i个字符
private char charAt(int i) {
return text.charAt(index + i);
}
public int compareTo(Suffix that) {
if (this == that)
return 0;
int n = Math.min(this.length(), that.length());
for (int i = 0; i < n; i++) {
if (this.charAt(i) < that.charAt(i))
return -1;
else if (this.charAt(i) > that.charAt(i))
return +1;
}
return this.length() - that.length();
}
public String toString() {
return text.substring(index);
}
}
public int length() {
return suffixes.length;
}
}
2.2 API实现
/**
* 返回后缀字符串suffixes[i]在原文本串中的起始索引
*/
public int index(int i) {
if (i < 0 || i >= suffixes.length)
throw new IllegalArgumentException();
return suffixes[i].index;
}
/**
* 返回后缀字符串suffixes[i]和suffixes[i-1]的最大公共前缀长度
*/
public int lcp(int i) {
if (i < 1 || i >= suffixes.length)
throw new IllegalArgumentException();
Suffix s = suffixes[i];
Suffix t = suffixes[i - 1];
int n = Math.min(s.length(), t.length());
for (int i = 0; i < n; i++) {
if (s.charAt(i) != t.charAt(i))
return i;
}
return n;
}
/**
* 返回后缀字符串suffixes[i]
*/
public String select(int i) {
if (i < 0 || i >= suffixes.length)
throw new IllegalArgumentException();
return suffixes[i].toString();
}
/**
* 返回小于键key的后缀数量
*/
public int rank(String key) {
int lo = 0, hi = suffixes.length - 1;
while (lo <= hi) {
int mid = lo + (hi - lo) / 2;
int cmp = compare(key, suffixes[mid]);
if (cmp < 0)
hi = mid - 1;
else if (cmp > 0)
lo = mid + 1;
else
return mid;
}
return lo;
}
2.3 完整源码
public class SuffixArray {
private Suffix[] suffixes;
public SuffixArray(String text) {
int n = text.length();
this.suffixes = new Suffix[n];
for (int i = 0; i < n; i++)
suffixes[i] = new Suffix(text, i);
Arrays.sort(suffixes);
}
private static class Suffix implements Comparable<Suffix> {
private final String text;
private final int index;
private Suffix(String text, int index) {
this.text = text;
this.index = index;
}
private int length() {
return text.length() - index;
}
private char charAt(int i) {
return text.charAt(index + i);
}
public int compareTo(Suffix that) {
if (this == that) return 0; // optimization
int n = Math.min(this.length(), that.length());
for (int i = 0; i < n; i++) {
if (this.charAt(i) < that.charAt(i)) return -1;
if (this.charAt(i) > that.charAt(i)) return +1;
}
return this.length() - that.length();
}
public String toString() {
return text.substring(index);
}
}
/**
* Returns the length of the input string.
* @return the length of the input string
*/
public int length() {
return suffixes.length;
}
/**
* Returns the index into the original string of the <em>i</em>th smallest suffix.
* That is, {@code text.substring(sa.index(i))} is the <em>i</em>th smallest suffix.
* @param i an integer between 0 and <em>n</em>-1
* @return the index into the original string of the <em>i</em>th smallest suffix
* @throws java.lang.IllegalArgumentException unless {@code 0 <= i < n}
*/
public int index(int i) {
if (i < 0 || i >= suffixes.length) throw new IllegalArgumentException();
return suffixes[i].index;
}
/**
* Returns the length of the longest common prefix of the <em>i</em>th
* smallest suffix and the <em>i</em>-1st smallest suffix.
* @param i an integer between 1 and <em>n</em>-1
* @return the length of the longest common prefix of the <em>i</em>th
* smallest suffix and the <em>i</em>-1st smallest suffix.
* @throws java.lang.IllegalArgumentException unless {@code 1 <= i < n}
*/
public int lcp(int i) {
if (i < 1 || i >= suffixes.length) throw new IllegalArgumentException();
return lcpSuffix(suffixes[i], suffixes[i-1]);
}
// longest common prefix of s and t
private static int lcpSuffix(Suffix s, Suffix t) {
int n = Math.min(s.length(), t.length());
for (int i = 0; i < n; i++) {
if (s.charAt(i) != t.charAt(i)) return i;
}
return n;
}
/**
* Returns the <em>i</em>th smallest suffix as a string.
* @param i the index
* @return the <em>i</em> smallest suffix as a string
* @throws java.lang.IllegalArgumentException unless {@code 0 <= i < n}
*/
public String select(int i) {
if (i < 0 || i >= suffixes.length) throw new IllegalArgumentException();
return suffixes[i].toString();
}
/**
* Returns the number of suffixes strictly less than the {@code query} string.
* We note that {@code rank(select(i))} equals {@code i} for each {@code i}
* between 0 and <em>n</em>-1.
* @param query the query string
* @return the number of suffixes strictly less than {@code query}
*/
public int rank(String query) {
int lo = 0, hi = suffixes.length - 1;
while (lo <= hi) {
int mid = lo + (hi - lo) / 2;
int cmp = compare(query, suffixes[mid]);
if (cmp < 0) hi = mid - 1;
else if (cmp > 0) lo = mid + 1;
else return mid;
}
return lo;
}
// compare query string to suffix
private static int compare(String query, Suffix suffix) {
int n = Math.min(query.length(), suffix.length());
for (int i = 0; i < n; i++) {
if (query.charAt(i) < suffix.charAt(i)) return -1;
if (query.charAt(i) > suffix.charAt(i)) return +1;
}
return query.length() - suffix.length();
}
/**
* Unit tests the {@code SuffixArray} data type.
*
* @param args the command-line arguments
*/
public static void main(String[] args) {
String s = StdIn.readAll().replaceAll("\\s+", " ").trim();
SuffixArray suffix = new SuffixArray(s);
// StdOut.println("rank(" + args[0] + ") = " + suffix.rank(args[0]));
StdOut.println(" i ind lcp rnk select");
StdOut.println("---------------------------");
for (int i = 0; i < s.length(); i++) {
int index = suffix.index(i);
String ith = "\"" + s.substring(index, Math.min(index + 50, s.length())) + "\"";
assert s.substring(index).equals(suffix.select(i));
int rank = suffix.rank(s.substring(index));
if (i == 0) {
StdOut.printf("%3d %3d %3s %3d %s\n", i, index, "-", rank, ith);
}
else {
int lcp = suffix.lcp(i);
StdOut.printf("%3d %3d %3d %3d %s\n", i, index, lcp, rank, ith);
}
}
}
}
三、性能优化
后缀数组在构造时,性能消耗主要在于构造时的后缀字符串排序。最坏情况下,源文本字符串的所有字符都相同,此时排序所需时间会达到平方级别,因此可以采用三向字符串快速排序的方法进行优化。
优化有两方面:
- 不再保存实际的后缀数组对象,而是用一个索引数组index[i]表示,这样做可以节省空间
- 将构造时的排序方法替换为“三向字符串快速排序”,这种排序方法对文本中出现大量重复字符的情况有较好的性能(提升至线性)。
关键源码:
public class SuffixArrayX {
private static final int CUTOFF = 5; // cutoff to insertion sort
private final char[] text; // 保存文本字符串
private final int[] index; // index[i] = j表示排序后第i个后缀字符串为text.substring(j)
private final int n; // number of characters in text
public SuffixArrayX(String text) {
n = text.length();
text = text + '\0';
this.text = text.toCharArray();
this.index = new int[n];
for (int i = 0; i < n; i++)
index[i] = i;
// 对后缀字符串数组text[0..n-1],text[1..n-1],...,text[n-1..n-1]进行三向字符串快速排序
// text[index[i]...n-1]表示当前排在第i位的后缀字符串
sort(0, n - 1, 0);
}
/**
* 三向字符串快速排序
* @param lo 起始后缀字符串text[index[lo]...N-1]
* @param hi 结束后缀字符串text[index[hi]...N-1]
* @param d 待排序字符位置
*/
private void sort(int lo, int hi, int d) {
// 对于小数组,切换为插入排序
if (hi <= lo + CUTOFF) {
insertion(lo, hi, d);
return;
}
int lt = lo, gt = hi;
char v = text[index[lo] + d];
int i = lo + 1;
while (i <= gt) {
char t = text[index[i] + d];
if (t < v)
exch(lt++, i++);
else if (t > v)
exch(i, gt--);
else
i++;
}
// a[lo..lt-1] < v = a[lt..gt] < a[gt+1..hi].
sort(lo, lt - 1, d);
if (v > 0)
sort(lt, gt, d + 1);
sort(gt + 1, hi, d);
}
}
完整的优化后的后缀数组源码:
public class SuffixArrayX {
private static final int CUTOFF = 5; // cutoff to insertion sort
private final char[] text; // 保存文本字符串
private final int[] index; // index[i] = j表示排序后第i个后缀字符串为text.substring(j)
private final int n; // number of characters in text
public SuffixArrayX(String text) {
n = text.length();
text = text + '\0';
this.text = text.toCharArray();
this.index = new int[n];
for (int i = 0; i < n; i++)
index[i] = i;
// 对后缀字符串数组text[0...n-1],text[1...n-1],...,text[n-1...n-1]进行三向字符串快速排序
// text[index[i]...n-1]表示当前排在第i位的后缀字符串
sort(0, n - 1, 0);
}
/**
* 三向字符串快速排序
*
* @param lo
* 起始后缀字符串text[index[lo]...N-1]
* @param hi
* 结束后缀字符串text[index[hi]...N-1]
* @param d
* 待排序字符位置
*/
private void sort(int lo, int hi, int d) {
// 对于小数组,切换为插入排序
if (hi <= lo + CUTOFF) {
insertion(lo, hi, d);
return;
}
int lt = lo, gt = hi;
char v = text[index[lo] + d];
int i = lo + 1;
while (i <= gt) {
char t = text[index[i] + d];
if (t < v)
exch(lt++, i++);
else if (t > v)
exch(i, gt--);
else
i++;
}
// a[lo..lt-1] < v = a[lt..gt] < a[gt+1..hi].
sort(lo, lt - 1, d);
if (v > 0)
sort(lt, gt, d + 1);
sort(gt + 1, hi, d);
}
// sort from a[lo] to a[hi], starting at the dth character
private void insertion(int lo, int hi, int d) {
for (int i = lo; i <= hi; i++)
for (int j = i; j > lo && less(index[j], index[j - 1], d); j--)
exch(j, j - 1);
}
// is text[i+d..n) < text[j+d..n) ?
private boolean less(int i, int j, int d) {
if (i == j)
return false;
i = i + d;
j = j + d;
while (i < n && j < n) {
if (text[i] < text[j])
return true;
if (text[i] > text[j])
return false;
i++;
j++;
}
return i > j;
}
private void exch(int i, int j) {
int swap = index[i];
index[i] = index[j];
index[j] = swap;
}
public int length() {
return n;
}
/**
* Returns the index into the original string of the <em>i</em>th smallest
* suffix. That is, {@code text.substring(sa.index(i))} is the <em>i</em>
* smallest suffix.
*
* @param i
* an integer between 0 and <em>n</em>-1
* @return the index into the original string of the <em>i</em>th smallest
* suffix
* @throws java.lang.IllegalArgumentException
* unless {@code 0 <=i < n}
*/
public int index(int i) {
if (i < 0 || i >= n)
throw new IllegalArgumentException();
return index[i];
}
/**
* Returns the length of the longest common prefix of the <em>i</em>th
* smallest suffix and the <em>i</em>-1st smallest suffix.
*
* @param i
* an integer between 1 and <em>n</em>-1
* @return the length of the longest common prefix of the <em>i</em>th
* smallest suffix and the <em>i</em>-1st smallest suffix.
* @throws java.lang.IllegalArgumentException
* unless {@code 1 <= i < n}
*/
public int lcp(int i) {
if (i < 1 || i >= n)
throw new IllegalArgumentException();
return lcp(index[i], index[i - 1]);
}
// longest common prefix of text[i..n) and text[j..n)
private int lcp(int i, int j) {
int length = 0;
while (i < n && j < n) {
if (text[i] != text[j])
return length;
i++;
j++;
length++;
}
return length;
}
/**
* Returns the <em>i</em>th smallest suffix as a string.
*
* @param i
* the index
* @return the <em>i</em> smallest suffix as a string
* @throws java.lang.IllegalArgumentException
* unless {@code 0 <= i < n}
*/
public String select(int i) {
if (i < 0 || i >= n)
throw new IllegalArgumentException();
return new String(text, index[i], n - index[i]);
}
/**
* Returns the number of suffixes strictly less than the {@code query}
* string. We note that {@code rank(select(i))} equals {@code i} for each
* {@code i} between 0 and <em>n</em>-1.
*
* @param query
* the query string
* @return the number of suffixes strictly less than {@code query}
*/
public int rank(String query) {
int lo = 0, hi = n - 1;
while (lo <= hi) {
int mid = lo + (hi - lo) / 2;
int cmp = compare(query, index[mid]);
if (cmp < 0)
hi = mid - 1;
else if (cmp > 0)
lo = mid + 1;
else
return mid;
}
return lo;
}
// is query < text[i..n) ?
private int compare(String query, int i) {
int m = query.length();
int j = 0;
while (i < n && j < m) {
if (query.charAt(j) != text[i])
return query.charAt(j) - text[i];
i++;
j++;
}
if (i < n)
return -1;
if (j < m)
return +1;
return 0;
}
/**
* Unit tests the {@code SuffixArrayx} data type.
*
* @param args
* the command-line arguments
*/
public static void main(String[] args) {
String s = StdIn.readAll().replaceAll("\n", " ").trim();
SuffixArrayX suffix1 = new SuffixArrayX(s);
SuffixArray suffix2 = new SuffixArray(s);
boolean check = true;
for (int i = 0; check && i < s.length(); i++) {
if (suffix1.index(i) != suffix2.index(i)) {
StdOut.println("suffix1(" + i + ") = " + suffix1.index(i));
StdOut.println("suffix2(" + i + ") = " + suffix2.index(i));
String ith = "\"" + s.substring(suffix1.index(i), Math.min(suffix1.index(i) + 50, s.length())) + "\"";
String jth = "\"" + s.substring(suffix2.index(i), Math.min(suffix2.index(i) + 50, s.length())) + "\"";
StdOut.println(ith);
StdOut.println(jth);
check = false;
}
}
StdOut.println(" i ind lcp rnk select");
StdOut.println("---------------------------");
for (int i = 0; i < s.length(); i++) {
int index = suffix2.index(i);
String ith = "\"" + s.substring(index, Math.min(index + 50, s.length())) + "\"";
int rank = suffix2.rank(s.substring(index));
assert s.substring(index).equals(suffix2.select(i));
if (i == 0) {
StdOut.printf("%3d %3d %3s %3d %s\n", i, index, "-", rank, ith);
} else {
// int lcp = suffix.lcp(suffix2.index(i), suffix2.index(i-1));
int lcp = suffix2.lcp(i);
StdOut.printf("%3d %3d %3d %3d %s\n", i, index, lcp, rank, ith);
}
}
}
}
四、性能分析
对于长度为N的文本串,构造后缀数组:
- 时间复杂度
O(N) - 空间复杂度
O(N)
网友评论