import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
x_data = np.linspace(-0.5,0.5,200)[:,np.newaxis]
noise = np.random.normal(0,0.02,x_data.shape)
y_data = np.square(x_data)+noise
x = tf.placeholder(tf.float32,[None,1])
y = tf.placeholder(tf.float32,[None,1])
#定义神经网络中间层
Weight_L1 = tf.Variable(tf.random_normal([1,10]))
baises_L1 = tf.Variable(tf.zeros([1,10]))
Wx_plus_b_L1 = tf.matmul(x,Weight_L1)+baises_L1
L1 = tf.nn.tanh(Wx_plus_b_L1)
#定义输出层
Weights_L2 = tf.Variable(tf.random_normal([10,1]))
baises_L2 = tf.Variable(tf.zeros([1,1]))
Wx_plus_b_L2 = tf.matmul(L1,Weights_L2)+baises_L2
prediction = tf.nn.tanh(Wx_plus_b_L2)
#二次代价函数
loss = tf.reduce_mean(tf.square(y-prediction))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
for _ in range(2000):
sess.run(train_step,feed_dict={x:x_data,y:y_data})
#获得预测值
prediction_value = sess.run(prediction,feed_dict={x:x_data})
plt.figure()
plt.scatter(x_data,y_data)
plt.plot(x_data,prediction_value,'r-',lw=5)
plt.show()
网友评论