一、“方差”——均值偏离的幅度
比如说2018年第一季度,一共有59个交易日,茅台的股价算下来均值是735元,最高到过788元,最低到过682元,也就是说在这三个月中,茅台的股价一直围绕着735这个均值在上下波动,这种对均值的偏离幅度其实就叫做方差(variance),也就是我们平时所说的“波动率”——波动率是最常见的衡量风险的测度。从茅台股价的上下振幅来看,你会发现,茅台的价格波动不大,也就是俗称的“风险比较小”。
二、“偏度”——衡量风险方向
收益率的观察值,大部分都离均值不远,而那些离原点很远,表示偏离均值数值很大的数是比较少的,就意味着这些极端值发生的可能性是很低的。
收益率的图形会呈现出一个倒U形的形状,大部分的观察点都集中在倒U形的中间,高高地拱起来。而偏离均值的部分,就像尾巴,而两边的尾巴还是对称的,这样围绕着均值的均匀对称的分布就叫做正态分布。
一个正态分布,只要用均值和方差,就可以描述到了
比如也是2018年的第一季度,我找到了另外一只股票,叫“国际实业”。这只股票,在这59天中,有40天是赚钱的,只有19天是亏钱的。换句话说,这个股票对均值的偏离就会是不对称的,分布肯定也就是一个不对称的形状了,因为有40天是赚钱的,很多观察值都会集中在右边,所以右边的头很大,而左边就会拖着一根长长的尾巴,这就叫左偏。这种对均值偏离的方向就叫偏度(skewness),它是衡量一个变量往上还是往下的风险。
三、“肥尾”——衡量极端情况的可能性
在中国市场上,一个股票一天之内涨跌10%不是常见的事情。那么如果在一段时间内,一个股票发生这种极端值的可能性很大的话,我们就把它叫做“肥尾风险”(fat tail risk)
所谓“肥尾”是什么意思呢?它是针对着正态分布而言的。刚才我说过,在正态分布的情况下,偏离均值很远的极端值,它发生的可能性不是很高,所以倒U形的两边会是一个很平滑的尾巴。所以如果发生这种极端事件的可能性很高,尾巴就会翘起来,所以叫“肥尾”。
本节课带给我的启发:
波动率小的股票,风险相对较小;
偏度衡量一个变量往上还是往下的风险
肥尾衡量极端情况的可能性。
网友评论