美文网首页
LifeCycle源码分析

LifeCycle源码分析

作者: 风月寒 | 来源:发表于2022-03-15 15:48 被阅读0次

    LifeCycle用于帮助开发者管理Activity和Fragment 的生命周期。

    介绍Lifecycle之前,首先需要了解观察者模式。

    观察者模式首先需要被观察者和被观察者,被观察者里面可以添加观察者和删除观察者,以及有事件的时候通知观察的方法。而观察者则事收到事件的回调之后,即做出相应的处理。

    而Lifecycle则是典型的观察者模式。

    LifecycleOwner可以理解为被观察者。而它所有的处理全部在LifecycleRegistry中。

    那那些又可以当作被观察者了?其实只要我们在一个类中取实现LifecycleOwner,然后在对应的生命周期去设置不同的Lifecycle.State,这样即可。

    public class MyActivity extends Activity implements LifecycleOwner {
        private LifecycleRegistry mLifecycleRegistry;
    
        @Override
        protected void onCreate(@Nullable Bundle savedInstanceState) {
            super.onCreate(savedInstanceState);
            mLifecycleRegistry = new LifecycleRegistry(this);
            mLifecycleRegistry.setCurrentState(Lifecycle.State.CREATED);
        }
    
    
        @Override
        protected void onDestroy() {
            super.onDestroy();
            mLifecycleRegistry.setCurrentState(Lifecycle.State.DESTROYED);
        }
    
        @NonNull
        @Override
        public Lifecycle getLifecycle() {
            return mLifecycleRegistry;
        }
    }
    
    

    那同样的道理就是我们只要实现了LifecycleObserver就可以作为观察者。

    
    public class LifecycleObserverImpl implements LifecycleObserver {
    
        @OnLifecycleEvent(Lifecycle.Event.ON_CREATE)
        public void onCreate(){
            Log.e("zzf","---------onCreate--------");
        }
    
        @OnLifecycleEvent(Lifecycle.Event.ON_START)
        public void onStart(){
            Log.e("zzf","---------onStart--------");
        }
    
        @OnLifecycleEvent(Lifecycle.Event.ON_RESUME)
        public void onResume(){
            Log.e("zzf","---------onResume--------");
        }
    
        @OnLifecycleEvent(Lifecycle.Event.ON_PAUSE)
        public void onPause(){
            Log.e("zzf","---------onPause--------");
        }
    
        @OnLifecycleEvent(Lifecycle.Event.ON_STOP)
        public void onStop(){
            Log.e("zzf","---------onStop--------");
        }
    
        @OnLifecycleEvent(Lifecycle.Event.ON_DESTROY)
        public void onDestory(){
            Log.e("zzf","---------onDestory--------");
        }
    }
    
    

    那么有个问题来了,我们在观察者上面对应的Lifecycle.Event,而在被观察者的是设置Lifecycle.State,那这个Event和State是怎样关联起来的?

    那下面以ComponentActivity为例来讲讲整个流程。

    public class ComponentActivity extends androidx.core.app.ComponentActivity implements
            LifecycleOwner {
            }
    ```LifecycleOwner
    我们可以看到,ComponentActivity是实现了LifecycleOwner接口。
    
    
    

    @Override
    protected void onCreate(@Nullable Bundle savedInstanceState) {
    super.onCreate(savedInstanceState);
    mSavedStateRegistryController.performRestore(savedInstanceState);
    ReportFragment.injectIfNeededIn(this);
    if (mContentLayoutId != 0) {
    setContentView(mContentLayoutId);
    }
    }

    然后在oncreate中添加一个没有页面的ReportFragment,我们知道Fragment的生命周期和activity的生命周期是一致的,这让我们想到Glide的生命周期管理好像也是采用这种方法。
    
    
    所以接下来我们看在ReportFragment的生命周期中做了啥。
    
    
    

    @Override
    public void onActivityCreated(Bundle savedInstanceState) {
    super.onActivityCreated(savedInstanceState);
    dispatchCreate(mProcessListener);
    dispatch(Lifecycle.Event.ON_CREATE);
    }

    @Override
    public void onStart() {
        super.onStart();
        dispatchStart(mProcessListener);
        dispatch(Lifecycle.Event.ON_START);
    }
    
    @Override
    public void onResume() {
        super.onResume();
        dispatchResume(mProcessListener);
        dispatch(Lifecycle.Event.ON_RESUME);
    }
    
    @Override
    public void onPause() {
        super.onPause();
        dispatch(Lifecycle.Event.ON_PAUSE);
    }
    
    @Override
    public void onStop() {
        super.onStop();
        dispatch(Lifecycle.Event.ON_STOP);
    }
    
    @Override
    public void onDestroy() {
        super.onDestroy();
        dispatch(Lifecycle.Event.ON_DESTROY);
        // just want to be sure that we won't leak reference to an activity
        mProcessListener = null;
    }
    
    在生命周期中调用dispatch方法.
    
    
    

    private void dispatch(Lifecycle.Event event) {
    Activity activity = getActivity();

        if (activity instanceof LifecycleOwner) {
            Lifecycle lifecycle = ((LifecycleOwner) activity).getLifecycle();
            if (lifecycle instanceof LifecycleRegistry) {
                ((LifecycleRegistry) lifecycle).handleLifecycleEvent(event);
            }
        }
    }
    
    继续调用LifecycleRegistry的handleLifecycleEvent()。
    
    
    

    public void handleLifecycleEvent(@NonNull Lifecycle.Event event) {
    State next = getStateAfter(event);
    moveToState(next);
    }

    private void moveToState(State next) {
        if (mState == next) {
            return;
        }
        mState = next;
        if (mHandlingEvent || mAddingObserverCounter != 0) {
            mNewEventOccurred = true;
            // we will figure out what to do on upper level.
            return;
        }
        mHandlingEvent = true;
        sync();
        mHandlingEvent = false;
    }
    
    进入状态同步方法sync()。
    
    
    

    private void sync() {
    LifecycleOwner lifecycleOwner = mLifecycleOwner.get();
    if (lifecycleOwner == null) {
    throw new IllegalStateException("LifecycleOwner of this LifecycleRegistry is already"
    + "garbage collected. It is too late to change lifecycle state.");
    }
    while (!isSynced()) {
    mNewEventOccurred = false;
    // no need to check eldest for nullability, because isSynced does it for us.
    if (mState.compareTo(mObserverMap.eldest().getValue().mState) < 0) {
    backwardPass(lifecycleOwner);
    }
    Entry<LifecycleObserver, ObserverWithState> newest = mObserverMap.newest();
    if (!mNewEventOccurred && newest != null
    && mState.compareTo(newest.getValue().mState) > 0) {
    forwardPass(lifecycleOwner);
    }
    }
    mNewEventOccurred = false;
    }

    mState.compareTo(mObserverMap.eldest().getValue().mState) < 0 从缓存的观察者中拿出最旧的状态,与当前状态进行比较,如果小于 0, 说明观察者的状态提前于当前状态,那么就执行一个backwardPass(lifecycleOwner) 方法,让观察者的状态回退到当前状态上
    
     mState.compareTo(newest.getValue().mState) > 0 这个判断正好和上面相反,说明当前的观察者状态落后于当前状态,那么就让观察者的状态追上当前状态,执行 forwardPass(lifecycleOwner)
    
    
    通过分析 forwardPass 和 backwardPass 方法,我们看到其内部又调用了两个方法, downEvent 和 upEvent,我们称呼为升级事件和降级事件
    
    
    
    
    

    private static Event downEvent(State state) {
    switch (state) {
    case INITIALIZED:
    throw new IllegalArgumentException();
    case CREATED:
    return ON_DESTROY;
    case STARTED:
    return ON_STOP;
    case RESUMED:
    return ON_PAUSE;
    case DESTROYED:
    throw new IllegalArgumentException();
    }
    throw new IllegalArgumentException("Unexpected state value " + state);
    }

    private static Event upEvent(State state) {
        switch (state) {
            case INITIALIZED:
            case DESTROYED:
                return ON_CREATE;
            case CREATED:
                return ON_START;
            case STARTED:
                return ON_RESUME;
            case RESUMED:
                throw new IllegalArgumentException();
        }
        throw new IllegalArgumentException("Unexpected state value " + state);
    }
    
    在这个就回答了前面的哪个疑问,Event和state是怎样转换的。
    
    在backwardPass或forwardPass方法中最终调用的是dispatchEvent方法,进而调用mLifecycleObserver.onStateChanged(owner, event)。
    
    前面我们说了一大堆,都是对 Lifecycle 如何处理,并监听我们的生命周期的方法,也就是 Lifecycle是如何处理监听的。那么我们前面一直都没有说过,观察者那里来的?????????
    好,我们继续观察 LifecycleRegister 中的 addObserver(LifecycleObserver) 这个也是我们自定义观察者后,需要调用的方法
    
    
    

    @Override
    public void addObserver(@NonNull LifecycleObserver observer) {
    State initialState = mState == DESTROYED ? DESTROYED : INITIALIZED;
    ObserverWithState statefulObserver = new ObserverWithState(observer, initialState);
    ObserverWithState previous = mObserverMap.putIfAbsent(observer, statefulObserver);

    if (previous != null) {
        return;
    }
    LifecycleOwner lifecycleOwner = mLifecycleOwner.get();
    if (lifecycleOwner == null) {
        // it is null we should be destroyed. Fallback quickly
        return;
    }
    
    boolean isReentrance = mAddingObserverCounter != 0 || mHandlingEvent;
    State targetState = calculateTargetState(observer);
    mAddingObserverCounter++;
    while ((statefulObserver.mState.compareTo(targetState) < 0
            && mObserverMap.contains(observer))) {
        pushParentState(statefulObserver.mState);
        statefulObserver.dispatchEvent(lifecycleOwner, upEvent(statefulObserver.mState));
        popParentState();
        // mState / subling may have been changed recalculate
        targetState = calculateTargetState(observer);
    }
    
    if (!isReentrance) {
        // we do sync only on the top level.
        sync();
    }
    mAddingObserverCounter--;
    

    }

    
    创建了一个 ObserverWithState ,这是一个有状态的观察者,从名字上我们就可以看出来。两个参数分别是我们传入的观察者和我们刚刚创建好的状态。这是个装饰器模式,目的是给原对象,增加一个新属性,但又不改变原数据结构的方案。
    紧接着又把这个观察者和带有状态的观察者,放进了事先已经创建好的 Map 中,也就是 mObserverMap 然后返回了个东西, 阅读后发现,又和 Lifecycle 的注释对上了。
    
    之后,计算出当前 Activity 或 Fragment 的状态,并判断,如果当前观察者的状态落后于 Activity 或 Fragment 的状态,则立即执行dispatchEvent() 方法,执行回调。
    
    
    

    相关文章

      网友评论

          本文标题:LifeCycle源码分析

          本文链接:https://www.haomeiwen.com/subject/rvjydrtx.html