因为最近发现aws服务器网络不是特别稳定,所以想监控一下网络的联通性和延迟。但是发现并没有可以直接用的工具。
搭建了smartping,worldping,smokeping这三个工具发现都不能使用
于是就使用tcpping来不断的将日志保存到本地文件,然后使用python解析数据生成自己需要的数据,放到echarts里面来展示。能够达到和上述的三种工具的相同效果。
部分效果:
image.png
日志默认输出格式
2020年 06月 07日 星期日 00:56:13 CST
traceroute to 54.189.110.117 (54.189.110.117), 255 hops max, 60 byte packets
seq 119049: tcp response from ec2-54-189-110-117.us-west-2.compute.amazonaws.com (54.189.110.117) <syn,ack> 186.962 ms
2020年 06月 07日 星期日 00:56:14 CST
traceroute to 54.189.110.117 (54.189.110.117), 255 hops max, 60 byte packets
seq 119050: tcp response from ec2-54-189-110-117.us-west-2.compute.amazonaws.com (54.189.110.117) <syn,ack> 183.514 ms
2020年 06月 07日 星期日 00:56:15 CST
traceroute to 54.189.110.117 (54.189.110.117), 255 hops max, 60 byte packets
seq 119051: tcp response from ec2-54-189-110-117.us-west-2.compute.amazonaws.com (54.189.110.117) <syn,ack> 183.347 ms
2020年 06月 07日 星期日 00:56:16 CST
python3日志数据分析代码
import time
"""
日期转时间戳
"""
def unix_time(dt):
# 转换成时间数组
timeArray = time.strptime(dt, "%Y年%m月%d日%H:%M:%S")
# 转换成时间戳
timestamp = int(time.mktime(timeArray))
return timestamp
"""
时间戳转日期
"""
def custom_time(timestamp):
# 转换成localtime
time_local = time.localtime(timestamp)
# 转换成新的时间格式(2016-05-05 20:28:54)
dt = time.strftime("%Y/%m/%d %H:%M:%S", time_local)
return dt
"""
输出日志结果
"""
def data_handle(date_key,data_dict):
date_key_sorted = sorted(date_key)
date = []
data = []
for key in date_key_sorted:
date.append(key)
data.append(data_dict[key])
#print(len(data_dict))
date_fout = open(date_file_result, 'w', encoding='utf8')
date_fout.write(str(date))
date_fout.close()
#print(date)
data_fout = open(data_file_result, 'w', encoding='utf8')
data_fout.write(str(data))
data_fout.close()
#print(data)
log_file = "/Users/hfy/work/python/tools/analysis/111.log"
data_file_result = "/Users/hfy/work/python/tools/analysis/data_file_result.txt"
date_file_result = "/Users/hfy/work/python/tools/analysis/date_file_result.txt"
if __name__ == '__main__':
file = open(log_file, 'r')
data_dict = {}
date_key = []
time_str = ""
delay = 0
for line in file:
if line.find("CST") != -1:
# 时间格式转换
date_list = line.split(" ")
date_str = date_list[0] + date_list[1] + date_list[2] + date_list[4]
time_str = custom_time(unix_time(date_str))
if line.find("seq") != -1:
line_list = line.split(" ")
if len(line_list) < 12 and line.find("timeout") != -1:
delay = 0
else:
delay = float(line_list[9])
#收集延迟大于500和超时的日志信息
if delay == 0 or delay > 500 :
date_key.append(time_str)
data_dict[time_str] = delay
time_str = ""
delay = 0
data_handle(date_key,data_dict)
#echar https://echarts.apache.org/examples/zh/editor.html?c=area-simple 数据分析
echars数据展示地址:
https://echarts.apache.org/examples/zh/editor.html
只需要将输出的data和date放到正确的位置就会自动渲染数据
demo:
var base = +new Date(1968, 9, 3);
var oneDay = 24 * 3600 * 1000;
var date = [];
var data = [Math.random() * 300];
// for (var i = 1; i < 20000; i++) {
// var now = new Date(base += oneDay);
// date.push([now.getFullYear(), now.getMonth() + 1, now.getDate()].join('/'));
// data.push(Math.round((Math.random() - 0.5) * 20 + data[i - 1]));
// }
var data = [1201.895,1201.895,120.895,1201.895,12.895,1201.895,120.895,1201.895,12.895,1201.895]
var date = ['2020/06/05 15:17:15','2020/06/05 15:17:15','2020/06/05 15:17:15','2020/06/05 15:17:15','2020/06/05 15:17:15','2020/06/05 15:17:15','2020/06/05 15:17:15','2020/06/05 15:17:15','2020/06/05 15:17:15','2020/06/05 15:17:15']
option = {
tooltip: {
trigger: 'axis',
position: function (pt) {
return [pt[0], '10%'];
}
},
title: {
left: 'center',
text: '大数据量面积图',
},
toolbox: {
feature: {
dataZoom: {
yAxisIndex: 'none'
},
restore: {},
saveAsImage: {}
}
},
xAxis: {
type: 'category',
boundaryGap: false,
data: date
},
yAxis: {
type: 'value',
boundaryGap: [0, '100%']
},
dataZoom: [{
type: 'inside',
start: 0,
end: 10
}, {
start: 0,
end: 10,
handleIcon: 'M10.7,11.9v-1.3H9.3v1.3c-4.9,0.3-8.8,4.4-8.8,9.4c0,5,3.9,9.1,8.8,9.4v1.3h1.3v-1.3c4.9-0.3,8.8-4.4,8.8-9.4C19.5,16.3,15.6,12.2,10.7,11.9z M13.3,24.4H6.7V23h6.6V24.4z M13.3,19.6H6.7v-1.4h6.6V19.6z',
handleSize: '80%',
handleStyle: {
color: '#fff',
shadowBlur: 3,
shadowColor: 'rgba(0, 0, 0, 0.6)',
shadowOffsetX: 2,
shadowOffsetY: 2
}
}],
series: [
{
name: '网络延迟',
type: 'line',
smooth: true,
symbol: 'none',
sampling: 'average',
itemStyle: {
color: 'rgb(255, 70, 131)'
},
areaStyle: {
color: new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
offset: 0,
color: 'rgb(255, 158, 68)'
}, {
offset: 1,
color: 'rgb(255, 70, 131)'
}])
},
data: data
}
]
};
网友评论