具体参考:(如果侵权,速删)
1.https://blog.csdn.net/u013171226/article/details/115064641
2.https://blog.csdn.net/qq_45646174/article/details/112913012
3.https://zhuanlan.zhihu.com/p/156835045?from_voters_page=true
4.https://blog.csdn.net/weixin_48695781/article/details/121677849
5.https://blog.csdn.net/didiaopao/article/details/119954291
6.https://blog.csdn.net/m0_53392188/article/details/119334634
环境:
Nvidia RTX 3060
Ubuntu 16.04
CUDA 11.1
cuDNN 8.2.0
torch 1.10.1+cu111
torchvision 0.11.2+cu111
如果不是从头开始,退出并删除虚拟环境
source deactivate //退出虚拟环境
conda remove -n yolov5 --all //删除虚拟环境
conda env list //查看虚拟环境列表
一.搭建YOLOv5深度学习环境
1.使用conda创建YOLOv5需要的环境
conda create -n yolov5 python=3.7 //yolov5是虚拟环境的名字
source activate yolov5
2.然后下载YOLOv5工程
git clone https://github.com/ultralytics/yolov5
yolov5-1.png
如果出现问题:fatal: unable to access 'https://github.com/ultralytics/yolov5/': gnutls_handshake() failed: The TLS connection was non-properly terminated.
参考:https://www.jianshu.com/p/b38ef810fe24
如果出现问题:fatal: remote error:
The unauthenticated git protocol on port 9418 is no longer supported.
Please see https://github.blog/2021-09-01-improving-git-protocol-security-github/ for more information.
参考:https://www.jianshu.com/p/b38ef810fe24
3.安装依赖
cd yolov5
(1)可以使用pip命令安装
pip install -r requirements.txt
(2)pytorch也可自行安装,注意pytorch和cuda版本需对应,官网地址:https://pytorch.org/get-started/previous-versions/
对应关系如下:
本文选择使用官网命令进行安装,torch 1.10.1+cu111,torchvision 0.11.2+cu111
pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/torch_stable.html
yolov5-15.png
二.准备自己的数据集
1.标注文件
用labelimg标注自己的数据集,利用labelimg标注数据的时候,注意选择生成的txt格式为yolo格式
image.png
按照下图格式创建数据集
文件夹下:images + labels
其中images文件夹中存放图片,labels文件夹中存放标签txt
yolov5-3.png
2.创建一个split_train_val.py文件,代码内容如下:
# coding:utf-8
import os
import random
import argparse
parser = argparse.ArgumentParser()
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='/home/slave110/yolov5/eddy316/labels', type=str, help='input xml label path')
#数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='/home/slave110/yolov5/demo1', type=str, help='output txt label path')
opt = parser.parse_args()
trainval_percent = 1.0
train_percent = 0.6
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):
os.makedirs(txtsavepath)
num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)
file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')
for i in list_index:
name = total_xml[i][:-4] + '\n'
if i in trainval:
file_trainval.write(name)
if i in train:
file_train.write(name)
else:
file_val.write(name)
else:
file_test.write(name)
file_trainval.close()
file_train.close()
file_val.close()
file_test.close()
运行代码
python split_train_val.py
然后新建的demo1文件夹中会生成四个txt文件
yolov5-5.png
不知道为什么我标注的图片是从1始
yolov5-7.png
所以写了个小程序,将每一行的第一列减1,在写入新的文件夹中
import os
path = '/home/slave110/yolov5/eddy316/labels'
path_result = r'/home/slave110/yolov5/eddy316/labels111'
for name in os.listdir(path):
print(path + name)
f = open(path + '/' + name, 'r')
result = open(path_result + '/' + name,'w')
while 1:
line = f.readline()
if not line:
break
values = line.split(' ');
first = int(values[0]) - 1
new_1 = str(first) + ' ' + values[1] + ' ' + values[2] + ' ' + values[3] + ' ' + values[4]
result.write(new_1)
f.close()
result.close()
处理之后如下所示:
yolov5-8.png
3.创建voc_label.py文件,将训练集、验证集、测试集生成label标签(训练中要用到),同时将数据集路径导入txt文件中,代码内容如下:
# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
from os import getcwd
sets = ['train', 'val']
classes = ["Repelling Focus", "Attracting Focus" , "Center" , "Saddle Point"] # 改成自己的类别
abs_path = os.getcwd()
print(abs_path)
#def convert(size, box):
# dw = 1. / (size[0])
# dh = 1. / (size[1])
# x = (box[0] + box[1]) / 2.0 - 1
# y = (box[2] + box[3]) / 2.0 - 1
# w = box[1] - box[0]
# h = box[3] - box[2]
# x = x * dw
# w = w * dw
# y = y * dh
# h = h * dh
# return x, y, w, h
def convert_annotation(image_id):
in_file = open('/home/slave110/yolov5/eddy316/%s.xml' % (image_id), encoding='UTF-8')
out_file = open('/home/trainingai/zyang/yolov5/paper_data/labels/%s.txt' % (image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
# difficult = obj.find('difficult').text
difficult = obj.find('Difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
b1, b2, b3, b4 = b
# 标注越界修正
if b2 > w:
b2 = w
if b4 > h:
b4 = h
b = (b1, b2, b3, b4)
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
for image_set in sets:
if not os.path.exists('home/slave110/yolov5/eddy316/labels/'):
os.makedirs('home/slave110/yolov5/eddy316/labels/')
image_ids = open('/home/slave110/yolov5/demo1/%s.txt' % (image_set)).read().strip().split()
list_file = open('/home/slave110/yolov5/txt/%s.txt' % (image_set), 'w')
for image_id in image_ids:
list_file.write(abs_path + '/eddy316/images/%s.bmp\n' % (image_id)) //注意:图片格式
#convert_annotation(image_id)
list_file.close()
新建文件夹txt,执行命令:
python voc_label.py
文件夹中会出现三个txt,其中test.txt是我手动加的
yolov5-9.png
txt中的内容如下:
yolov5-10.png
3.配置文件
1)数据集的配置
在yolov5目录下的data文件夹下新建一个ab.yaml文件(可以自定义命名),用来存放训练集和验证集的划分文件(train.txt和val.txt),这两个文件是通过运行voc_label.py代码生成的,然后是目标的类别数目和具体类别列表,ab.yaml内容如下:
train: /home/slave110/yolov5/txt/train.txt
val: /home/slave110/yolov5/txt/val.txt
#number of classes
nc: 4
#class names
names: ['Repelling Focus', 'Attracting Focus', 'Center', 'Saddle Point']
2)修改/model/yolov5s.yaml
将 nc : 80 改成 nc : 4
训练命令:python train.py --img 1000 --batch 4 --epoch 100 --data data/ab.yaml --cfg models/yolov5s.yaml --weights yolov5s.pt --device '0'
python train.py --img 640 --batch 4 --epoch 300 --data data/ab.yaml --cfg models/yolov5s.yaml --weights yolov5s.pt --device '0' # 0号GPU
网友评论