美文网首页
极大似然估计&最小二乘

极大似然估计&最小二乘

作者: 闫阿佳 | 来源:发表于2017-12-13 22:14 被阅读0次

最大似然估计

似然函数:这个函数反应的是在不同的参数θ取值下,取得当前这个样本集的可能性,因此称为参数θ相对于样本集X的似然函数。

最大似然估计:现在已经拿到了很多个样本(你的数据集中所有因变量),这些样本值已经实现,最大似然估计就是去找到那个(组)参数估计值,使得前面已经实现的样本值发生概率最大。因为你手头上的样本已经实现了,其发生概率最大才符合逻辑。这时是求样本所有观测的联合概率最大化,是个连乘积,只要取对数,就变成了线性加和。此时通过对参数求导数,并令一阶导数为零,就可以通过解方程(组),得到最大似然估计值。
最大似然估计是已经知道了结果,然后寻求使该结果出现的可能性最大的条件

最小二乘

找到一个(组)估计值,使得实际值与估计值的距离最小。本来用两者差的绝对值汇总并使之最小是最理想的,但绝对值在数学上求最小值比较麻烦,因而替代做法是,找一个(组)估计值,使得实际值与估计值之差的平方加总之后的值最小,称为最小二乘。“二乘”的英文为least square,其实英文的字面意思是“平方最小”。这时,将这个差的平方的和式对参数求导数,并取一阶导数为零,就是OLSE。

相关文章

  • 极大似然估计&最小二乘

    最大似然估计 似然函数:这个函数反应的是在不同的参数θ取值下,取得当前这个样本集的可能性,因此称为参数θ相对于样本...

  • 极大似然估计与最小二乘

    前言:发出上一篇文章“从线性回归到逻辑回归后”https://www.jianshu.com/p/033b582c...

  • 最大似然估计和最小二乘法

    最小二乘、极大似然、梯度下降有何区别? 最大似然估计: 模型已定,参数未知,需要已知这个概率分布函数利用已知的样本...

  • 极大似然估计

    极大似然估计 以前多次接触过极大似然估计,但一直都不太明白到底什么原理,最近在看贝叶斯分类,对极大似然估计...

  • 极大似然估计

    极大似然估计(Maximum Likelihood Estimation,MLE),也称最大似然估计。“似然”是对...

  • 极大似然估计

    序 极大似然估计和最大后验估计是机器学习中常用的两种参数估计方法。本次记录MLE的原理和用法,为后续推导LR等目标...

  • 极大似然估计

    动机 在学习机器学习算法过程中,发现很多算法策略都采用极大似然估计, 如:线性、逻辑回归,决策树,隐马尔科夫模型。...

  • 极大似然估计

    极大似然估计是一种参数估计的方法(知模型求参数)。先验概率是 知因求果,后验概率是 知果求因,极大似然是 知果求最...

  • 极大似然估计

    现实情况中我们可能会遇到这样的一些例子,需要得到一所高校有车学生的分布情况(假定符合参数为p的伯努利分布),某地区...

  • 极大似然估计

    似然函数 似然函数(likelihood function)是一种关于统计模型中的参数的函数,既然是函数那自变量就...

网友评论

      本文标题:极大似然估计&最小二乘

      本文链接:https://www.haomeiwen.com/subject/rydpjxtx.html