美文网首页
最大似然估计和最小二乘法

最大似然估计和最小二乘法

作者: 小幸运Q | 来源:发表于2018-08-17 11:08 被阅读13次

最小二乘、极大似然、梯度下降有何区别?


最大似然估计:

模型已定,参数未知,需要已知这个概率分布函数
利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值。

例:

假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有可能是多少?而其后的理论支撑是什么呢?,我要求最有可能的黑白球之间的比例时,就采取最大似然估计法:
我假设我抽到黑球的概率为p,那得出30次黑球70次白球这个结果的概率为:P(黑=30)=p^70 *(1-p)^30,现在我想要得出p是多少啊,很简单,使得P(白=70)最大的p就是我要求的结果,接下来求导的的过程就是求极值的过程。

(p^70 *(1-p)^30)max =(ln(p^70 *(1-p)^30))max = 70lnp+30ln(1-p)max
求导: 70/p=30/1-p    p=0.7

最小二乘估计:

最小二乘法以估计值与观测值的差的平方和作为损失函数,极大似然法则是以最大化目标值的似然概率函数为目标函数,从概率统计的角度处理线性回归并在似然概率函数为高斯函数的假设下同最小二乘建立了的联系。

最小二乘法是极大似然估计在概率分布按照正态分布的时候得出的结果

相关文章

  • 知识点网站

    最大似然估计 (MLE) 最大后验概率(MAP) 最大似然估计和最小二乘法怎么理解? 常用的数据预处理方法,用Py...

  • 最大似然估计和最小二乘法

    这俩玩意看着简单,每次回想起来 总觉得哪里不明白,就总结一下吧。 先看看百度的解释: 最大似然估计(maximum...

  • 最大似然估计和最小二乘法

    最小二乘、极大似然、梯度下降有何区别? 最大似然估计: 模型已定,参数未知,需要已知这个概率分布函数利用已知的样本...

  • 矩估计和最大似然估计

  • 最大似然估计

    0.参数估计 参数估计分为:点估计区间估计 点估计包含:矩估计法最大似然估计法(本章讲这里)最小二乘法贝叶斯估计法...

  • 最大似然估计

    很简单,如果把产生的误差比作犯罪,那最大似然估计就是找出最有可能作案的犯罪嫌疑人,即找到参数长什么样如何组合会导致...

  • 最大似然估计

    极大似然估计,通俗理解来说,就是利用已知的样本结果信息,反推最具有可能(最大概率)导致这些样本结果出现的模型参数值...

  • 机器学习笔记-2-线性回归和似然估计

    本文我们讨论以下问题: 线性回归及线性模型的定义 利用最小二乘法估计线性模型参数 似然函数和极大似然估计,后者和最...

  • AI面试题第一弹(神经网络基础)

    刷题来准备面试。 一、手推逻辑回归 逻辑回归优化为什么用最大似然估计而不用最小二乘法? 最小二乘是非凸的,最大似然...

  • 最大似然估计和最大后验估计

    文章链接:https://www.cnblogs.com/shixisheng/p/7136890.html

网友评论

      本文标题:最大似然估计和最小二乘法

      本文链接:https://www.haomeiwen.com/subject/xxcgoxtx.html