简单介绍 TF-Ranking

作者: AI研习社 | 来源:发表于2019-03-25 11:01 被阅读9次
image

本文为 AI 研习社编译的技术博客,原标题 :

Introducing TF-Ranking

作者 |* Jesus Rodriguez*

翻译 | Lemon_Sophia

校对 | 邓普斯•杰弗 审核 | 酱番梨 整理 | 立鱼王

原文链接:

https://towardsdatascience.com/introducing-tf-ranking-f94433c33ff

image

排序是机器学习场景中最常见的问题之一。从搜索到推荐系统,排名模型是许多主流机器学习体系结构的重要组成部分。在机器学习理论中,排序方法通常使用像learning-to-rank(LTR)或machine learning ranking机器学习排序(LTR)这样的术语。尽管具有相关性,但是在大多数机器学习框架中,大规模开发LTR模型仍然是一个挑战。最近,来自谷歌的人工智能(AI)工程师引入了TF-Ranking,这是一个基于TensorFlow的框架,用于构建高度可伸缩的LTR模型。几周前发表的一篇研究论文详细阐述了TF-Ranking背后的原则。

从概念上讲,排序问题定义为对一组样本(或示例)进行排序的派生,这些示例可以最大化整个列表的效用。这个定义听起来类似于分类和回归问题,但排序问题从根本上是不同的。分类或回归的目标是尽可能准确地预测每个示例的标签或值,而排序的目标是对整个示例列表进行优化排序,以便最先显示相关度最高的示例。为了推断相关性,LTR方法尝试学习一个评分函数(valued scores),该函数将示例特征向量映射到标记数据的实值评分(real-valued scores)。

image

这种简单的体系结构已经成为大多数排名算法以及RankLib或LightGBM等库的基础。虽然这些库提供了有效的排序方法,但它们是针对小型数据集实现的,这使得它们在依赖于大量训练数据的实际场景中不切实际 。除此之外,现有的LTR库还没有为在深度学习场景中常见的稀疏和多维数据集而设计。

现有LTR stacks(LTR栈)的局限性使得LTR方法在深度学习场景中的实现越来越复杂。由于缺乏对主流深度学习框架(如TensorFlow、MxNet、PyTorch或Caffe2)中的排名模型的支持,这个问题变得愈加严峻。

进入 TF-Ranking

TF-Ranking是一个基于tensorflow的框架,它支持在深度学习场景中实现TLR方法。该框架包括实现流行的TLR技术,如成对pairwise或列表listwise损失函数、多项目评分、排名指标优化和无偏学习排名。

TF-Ranking的实现非常复杂,但使用起来也非常简单。该实现的核心组件是一个model_fn函数,它接受特征和标签作为输入,并根据模式(TRAIN、EVAL、PREDICT)返回损失、预测、度量指标和训练操作。使用TF-Ranking构建model_fn函数是基于两个基本组件的组合: 评分函数(scoring function)和排名头(ranking head)。

image
  • Scoring Function评分函数: TF-Ranking支持单项和多项评分功能。单项评分函数可以用函数F(X) = [F(x1);f (x2);:::;f(xn)],其中输入表示单个示例的特征,并计算一个分数作为输出。多项目评分函数扩展了一组示例的这种结构。TF-Ranking将每个示例列表分割成若干张量,张量的形状为[batch_size, group_size, feature_size]。从上面的代码示例中可以看到,评分函数是一个用户指定的闭包,它传递给了这个排名model_fn构建器。

  • Ranking Head排名头: TF-Ranking使用一个针对特定指标的排名头和排名逻辑的损失。从概念上讲,排名头结构计算排名指标和排名损失,给出分数、标签和可选的示例权重。通过编程的方式,排名头通过工厂方法tf .head.create_ranking_head公开。

使用TF-Ranking

从编程的角度来看,TF-Ranking实现了TensorFlow Estimator接口,该接口抽象了机器学习应用程序生命周期的不同方面,比如训练、评估、预测和模型服务。使用TF-Ranking的经验如下面的代码所示。

def get_estimator(hparams):

  def _train_op_fn(loss):
    
    return tf.contrib.layers.optimize_loss(
        loss=loss,
        global_step=tf.train.get_global_step(),
        learning_rate=hparams.learning_rate,
        optimizer="Adagrad")

  ranking_head = tfr.head.create_ranking_head(
      loss_fn=tfr.losses.make_loss_fn(_LOSS),
      eval_metric_fns=eval_metric_fns(),
      train_op_fn=_train_op_fn)

  return tf.estimator.Estimator(
      model_fn=tfr.model.make_groupwise_ranking_fn(
          group_score_fn=make_score_fn(),
          group_size=1,
          transform_fn=None,
          ranking_head=ranking_head),
      params=hparams)

除了编程简单之外,TF-Ranking还集成了TensorFlow生态系统的其他部分。使用TF-Rankign开发的模型可以使用TensorBoard工具集进行可视化评估,如下图所示。

image

TF-Ranking在现实世界中的应用

谷歌在两个关键任务场景中评估了 TF-Ranking: 对存储在谷歌驱动器中的文档进行Gmail搜索和推荐。在Gmail搜索场景中,使用TF-Ranking对匹配特定用户查询的五个结果进行排序。用户点击等指标被用作排名的相关标签。不同排序模型的结果如下矩阵所示。

image

在谷歌驱动器场景中,TF-Ranking用于实现一个推荐引擎,该引擎在用户访问驱动器主屏时显示当前相关的文档。与Gmail场景类似,推荐系统会考虑用户点击量来重新评估排名模型。结果如下矩阵所示。

image

TF-Ranking是对TensorFlow堆栈的一个很好的补充。不同于它的前身。TF-Ranking针对需要大型数据集的模型进行了优化,并基于TensorFlow估计器提供了非常简单的开发人员体验。包含示例和教程的TF-Ranking代码可以在GitHub上找到。

想要继续查看该篇文章相关链接和参考文献?

长按下方地址:

https://ai.yanxishe.com/page/TextTranslation/1342

AI入门、大数据、机器学习免费教程
35本世界顶级原本教程限时开放,这类书单由知名数据科学网站 KDnuggets 的副主编,同时也是资深的数据科学家、深度学习技术爱好者的Matthew Mayo推荐,他在机器学习和数据科学领域具有丰富的科研和从业经验。

点击链接即可获取:https://ai.yanxishe.com/page/resourceDetail/417

相关文章

  • 简单介绍 TF-Ranking

    本文为 AI 研习社编译的技术博客,原标题 :Introducing TF-Ranking作者 |* Jesus ...

  • [TensorFlow] TF-ranking

    参考资料 官方github:https://github.com/tensorflow/ranking[https...

  • 简单介绍

    【姓名】龙行 【城市】贵州人在北京 【职业】仪器开发 【标签】学习者 【公众号】暂无 【爱好】看书、深度思考、旅游...

  • 简单介绍

    这里momo 坐标古都 新手上路,多指教 会发一些日常或者自编的微故事 一般都是恐怖类型吧…… 不喜勿喷,毕竟刚入圈

  • 简单介绍

    第一次打开简书,我就把它当成我的日记本了,呵呵…就记录我和我的两个女儿的点点滴滴,陪伴他们,和她们一起成长。...

  • 简单介绍

    hadoop是什么 hadoop是一个由Apache基金会所开发的分布式系统基础框架 hadoop实现了一个分布式...

  • 简单介绍

    Hello 这里是一位对文字如痴如醉爱着的人。喜欢阅读,资历尚浅,学识浅薄,还请关照。 以后会不定期更文。 期待每一天。

  • 简单介绍

    91年生 大专专业是英语教育 本科专业是教育学 2009年下半年认识了现在的老公,2011年毕业后没有按常规考编制...

  • 简单介绍

    混沌鱼,道号静谦,国学传播人,全真龙门派28代,倡正觉禅,弘无上道。“青年心智成长与创业互助”活动助力参与者,“人...

  • iOS 开发- UI篇-UIWindow介绍

    UIWindow 简单介绍原文链接? iOS开发UI篇—UIWindow简单介绍 一、简单介绍 UIWindow是...

网友评论

    本文标题:简单介绍 TF-Ranking

    本文链接:https://www.haomeiwen.com/subject/ryqvvqtx.html