美文网首页
深度学习阅读清单

深度学习阅读清单

作者: 周筱鲁 | 来源:发表于2015-12-02 14:37 被阅读491次

    Last modified on December 18, 2014, at 9: 11 am. ----来自deeplearning.net

    Books

    • Deep Learning, Yoshua Bengio, Ian Goodfellow, Aaron Courville, MIT Press, In preparation.

    Review Papers

    Reinforcement Learning

    • Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. “Playing Atari with deep reinforcement learning.” arXiv preprint arXiv:1312.5602 (2013).
    • Volodymyr Mnih, Nicolas Heess, Alex Graves, Koray Kavukcuoglu. “Recurrent Models of Visual Attention” ArXiv e-print, 2014.

    Computer Vision

    NLP and Speech

    Disentangling Factors and Variations with Depth

    Transfer Learning and domain adaptation

    Practical Tricks and Guides

    Sparse Coding

    Foundation Theory and Motivation

    • Hinton, Geoffrey E. “Deterministic Boltzmann learning performs steepest descent in weight-space.” Neural computation 1.1 (1989): 143-150.
    • Bengio, Yoshua, and Samy Bengio. “Modeling high-dimensional discrete data with multi-layer neural networks.” Advances in Neural Information Processing Systems 12 (2000): 400-406.
    • Bengio, Yoshua, et al. “Greedy layer-wise training of deep networks.” Advances in neural information processing systems 19 (2007): 153.
    • Bengio, Yoshua, Martin Monperrus, and Hugo Larochelle. “Nonlocal estimation of manifold structure.” Neural Computation 18.10 (2006): 2509-2528.
    • Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. “Reducing the dimensionality of data with neural networks.” Science 313.5786 (2006): 504-507.
    • Marc’Aurelio Ranzato, Y., Lan Boureau, and Yann LeCun. “Sparse feature learning for deep belief networks.” Advances in neural information processing systems 20 (2007): 1185-1192.
    • Bengio, Yoshua, and Yann LeCun. “Scaling learning algorithms towards AI.” Large-Scale Kernel Machines 34 (2007).
    • Le Roux, Nicolas, and Yoshua Bengio. “Representational power of restricted boltzmann machines and deep belief networks.” Neural Computation 20.6 (2008): 1631-1649.
    • Sutskever, Ilya, and Geoffrey Hinton. “Temporal-Kernel Recurrent Neural Networks.” Neural Networks 23.2 (2010): 239-243.
    • Le Roux, Nicolas, and Yoshua Bengio. “Deep belief networks are compact universal approximators.” Neural computation 22.8 (2010): 2192-2207.
    • Bengio, Yoshua, and Olivier Delalleau. “On the expressive power of deep architectures.” Algorithmic Learning Theory. Springer Berlin/Heidelberg, 2011.
    • Montufar, Guido F., and Jason Morton. “When Does a Mixture of Products Contain a Product of Mixtures?.” arXiv preprint arXiv:1206.0387 (2012).
    • Montúfar, Guido, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. “On the Number of Linear Regions of Deep Neural Networks.” arXiv preprint arXiv:1402.1869 (2014).

    Supervised Feedfoward Neural Networks

    Large Scale Deep Learning

    Recurrent Networks

    Hyper Parameters

    Optimization

    Unsupervised Feature Learning

    Autoencoders

    Miscellaneous

    相关文章

      网友评论

          本文标题:深度学习阅读清单

          本文链接:https://www.haomeiwen.com/subject/ryzjhttx.html