同步wx订阅号(arXiv每日论文速递),支持后台回复'search 关键词'查询相关的最新论文。有些许帮助的话,麻烦关注一下哦(* ̄rǒ ̄)
cs.LG 方向,今日共计70篇
[cs.LG]:
【1】 Automatic Model Monitoring for Data Streams
标题:数据流的自动模型监控
作者: Fábio Pinto, Pedro Bizarro
链接:https://arxiv.org/abs/1908.04240
【2】 Mixture-based Multiple Imputation Models for Clinical Data with a Temporal Dimension
标题:具有时间维度的临床数据的基于混合的多重归因模型
作者: Ye Xue, Yuan Luo
链接:https://arxiv.org/abs/1908.04209
【3】 Instance Enhancement Batch Normalization: an Adaptive Regulator of Batch Noise
标题:实例增强批次归一化:一种批次噪声的自适应调节器
作者: Senwei Liang, Haizhao Yang
链接:https://arxiv.org/abs/1908.04008
【4】 RWR-GAE: Random Walk Regularization for Graph Auto Encoders
标题:RWR-GAE:图自动编码器的随机行走正则化
作者: Vaibhav, Robert Frederking
链接:https://arxiv.org/abs/1908.04003
【5】 A Study on Angular Based Embedding Learning for Text-independent Speaker Verification
标题:基于角度的嵌入学习在文本无关说话人确认中的应用研究
作者: Zhiyong Chen, Shugong Xu
链接:https://arxiv.org/abs/1908.03990
【6】 Visual and Semantic Prototypes-Jointly Guided CNN for Generalized Zero-shot Learning
标题:视觉和语义原型-联合指导的CNN用于广义零射击学习
作者: Chuanxing Geng, Songcan Chen
链接:https://arxiv.org/abs/1908.03983
【7】 TAPER: Time-Aware Patient EHR Representation
标题:锥化:时间感知的患者EHR表示
作者: Sajad Darabi, Majid Sarrafzadeh
链接:https://arxiv.org/abs/1908.03971
【8】 A Review of Cooperative Multi-Agent Deep Reinforcement Learning
标题:协作多Agent深度强化学习综述
作者: Afshin OroojlooyJadid, Davood Hajinezhad
链接:https://arxiv.org/abs/1908.03963
【9】 Experience Reuse with Probabilistic Movement Primitives
标题:使用概率移动原语进行体验重用
作者: Svenja Stark, Elmar Rueckert
备注:8 pages, 5 figures, IROS 2019
链接:https://arxiv.org/abs/1908.03936
【10】 Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables
标题:隐变量存在下的线性非高斯因果模型学习
作者: Saber Salehkaleybar, Kun Zhang
链接:https://arxiv.org/abs/1908.03932
【11】 DynaNet: Neural Kalman Dynamical Model for Motion Estimation and Prediction
标题:DynaNet:用于运动估计和预测的神经Kalman动力学模型
作者: Changhao Chen, Andrew Markham
链接:https://arxiv.org/abs/1908.03918
【12】 Data-Driven Randomized Learning of Feedforward Neural Networks
标题:数据驱动的前馈神经网络随机学习
作者: Grzegorz Dudek
链接:https://arxiv.org/abs/1908.03891
【13】 Unsupervised Neural Quantization for Compressed-Domain Similarity Search
标题:压缩域相似性搜索的无监督神经量化
作者: Stanislav Morozov, Artem Babenko
链接:https://arxiv.org/abs/1908.03883
【14】 SpecAE: Spectral AutoEncoder for Anomaly Detection in Attributed Networks
标题:SPAE:用于属性网络异常检测的谱自动编码器
作者: Yuening Li, Na Zou
链接:https://arxiv.org/abs/1908.03849
【15】 Deep Structured Cross-Modal Anomaly Detection
标题:深层结构跨模态异常检测
作者: Yuening Li, Xia Hu
备注:8 pages, in Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN)
链接:https://arxiv.org/abs/1908.03848
【16】 LoRMIkA: Local Rule-based Model Interpretability with k-optimal Associations
标题:LORMIkA:具有k-最优关联的基于局部规则的模型可解释性
作者: Dilini Rajapaksha, Wray Buntine
链接:https://arxiv.org/abs/1908.03840
【17】 Supervised Negative Binomial Classifier for Probabilistic Record Linkage
标题:用于概率记录链接的有监督负二项分类器
作者: Harish Kashyap K, Saumya Shah
链接:https://arxiv.org/abs/1908.03830
【18】 A Critical Note on the Evaluation of Clustering Algorithms
标题:关于聚类算法评价的一个关键注记
作者: Li Zhong, Bo Yuan
链接:https://arxiv.org/abs/1908.03782
【19】 Large-scale Traffic Signal Control Using a Novel Multi-Agent Reinforcement Learning
标题:一种新的多Agent强化学习在大规模交通信号控制中的应用
作者: Xiaoqiang Wang, Xinghua Chai
链接:https://arxiv.org/abs/1908.03761
【20】 Natural-Logarithm-Rectified Activation Function in Convolutional Neural Networks
标题:卷积神经网络中的自然对数校正激活函数
作者: Yang Liu, Jinghua Qu
链接:https://arxiv.org/abs/1908.03682
【21】 Transferring knowledge from monitored to unmonitored areas for forecasting parking spaces
标题:将用于预测停车位的知识从监测区域转移到非监测区域
作者: Andrei Ionita, Stefan Decker
链接:https://arxiv.org/abs/1908.03629
【22】 Recent Trends in Deep Learning Based Personality Detection
标题:基于深度学习的人格检测研究进展
作者: Yash Mehta, Erik Cambria
链接:https://arxiv.org/abs/1908.03628
【23】 Adaptive Ensemble of Classifiers with Regularization for Imbalanced Data Classification
标题:具有正则化的自适应分类器集成用于不平衡数据分类
作者: Chen Wang, Xiaofeng Gong
链接:https://arxiv.org/abs/1908.03595
【24】 LSTM-based Flow Prediction
标题:基于LSTM的流量预测
作者: Hongzhi Wang, Shihan Tang
链接:https://arxiv.org/abs/1908.03571
【25】 Behaviour Suite for Reinforcement Learning
标题:强化学习行为套件
作者: Ian Osband, Hado Van Hasselt
链接:https://arxiv.org/abs/1908.03568
【26】 That which we call private
标题:我们称之为私密的
作者: Úlfar Erlingsson, Shuang Song
链接:https://arxiv.org/abs/1908.03566
【27】 Personal VAD: Speaker-Conditioned Voice Activity Detection
标题:Personal VAD:说话人条件语音活动检测
作者: Shaojin Ding, Ignacio Lopez Moreno
备注:To be submitted to ICASSP 2020
链接:https://arxiv.org/abs/1908.04284
【28】 Modeling Daily Pan Evaporation in Humid Climates Using Gaussian Process Regression
标题:用高斯过程回归模拟湿润气候下的日蒸发皿蒸发
作者: Sevda Shabani, Annamaria R. Varkonyi-Koczy
链接:https://arxiv.org/abs/1908.04267
【29】 On the Validity of Self-Attention as Explanation in Transformer Models
标题:变压器模型中自我注意解释的有效性
作者: Gino Brunner, Roger Wattenhofer
链接:https://arxiv.org/abs/1908.04211
【30】 Taming Unbalanced Training Workloads in Deep Learning with Partial Collective Operations
标题:用部分集体操作驯服深度学习中的不平衡训练工作量
作者: Shigang Li, Torsten Hoefler
链接:https://arxiv.org/abs/1908.04207
【31】 A review on Deep Reinforcement Learning for Fluid Mechanics
标题:流体力学深度强化学习综述
作者: Paul Garnier, Elie Hachem
链接:https://arxiv.org/abs/1908.04127
【32】 Successive Projection Algorithm Robust to Outliers
标题:对野值具有鲁棒性的连续投影算法
作者: Nicolas Gillis
链接:https://arxiv.org/abs/1908.04109
【33】 Active Annotation: bootstrapping annotation lexicon and guidelines for supervised NLU learning
标题:主动注释:引导注释词典和有监督的NLU学习指南
作者: Federico Marinelli, Giuseppe Riccardi
链接:https://arxiv.org/abs/1908.04092
【34】 Fast Adaptation with Meta-Reinforcement Learning for Trust Modelling in Human-Robot Interaction
标题:人-机器人交互中信任建模的元强化学习快速自适应
作者: Yuan Gao, Danica Kragic
链接:https://arxiv.org/abs/1908.04087
【35】 Modeling continuous-time stochastic processes using -Curve mixtures
标题:使用 - 曲线混合建模连续时间随机过程
作者: Ronny Hug, Michael Arens
链接:https://arxiv.org/abs/1908.04030
【36】 Self-supervised Data Bootstrapping for Deep Optical Character Recognition of Identity Documents
标题:用于身份文件深度光学字符识别的自监督数据自举
作者: Oliver Mothes, Joachim Denzler
链接:https://arxiv.org/abs/1908.04027
【37】 Variational Autoencoded Regression: High Dimensional Regression of Visual Data on Complex Manifold
标题:变分自编码回归:复流形上视觉数据的高维回归
作者: YoungJoon Yoo, Jin Young Choi
备注:Published in CVPR 2017
链接:https://arxiv.org/abs/1908.04015
【38】 Deep Kernel Supervised Hashing for Network Embedding
标题:用于网络嵌入的深核监督哈希算法
作者: Jia-Nan Guo, He-Yan Huang
链接:https://arxiv.org/abs/1908.04007
【39】 Anomaly Detection in High Dimensional Data
标题:高维数据中的异常检测
作者: Priyanga Dilini Talagala, Kate Smith-Miles
链接:https://arxiv.org/abs/1908.04000
【40】 Enhanced Seismic Imaging with Predictive Neural Networks for Geophysics
标题:利用预测神经网络增强地球物理地震成像
作者: Ping Lu, George Zhao
链接:https://arxiv.org/abs/1908.03973
【41】 Structural Similarity based Anatomical and Functional Brain Imaging Fusion
标题:基于结构相似性的解剖脑功能成像融合
作者: Nishant Kumar, Stefan Gumhold
备注:9 pages, 3 figures, MICCAI-MBIA 2019
链接:https://arxiv.org/abs/1908.03958
【42】 Efficiency and Scalability of Multi-Lane Capsule Networks (MLCN)
标题:多通道胶囊网络(MLCN)的效率和可扩展性
作者: Vanderson M. do Rosario, Edson Borin
链接:https://arxiv.org/abs/1908.03935
【43】 ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks
标题:ACNet:通过非对称卷积块增强强大CNN的核心骨架
作者: Xiaohan Ding, Jungong Han
备注:Accepted to ICCV 2017
链接:https://arxiv.org/abs/1908.03930
【44】 GAN-Tree: An Incrementally Learned Hierarchical Generative Framework for Multi-Modal Data Distributions
标题:GAN-Tree:一种增量学习的多模态数据分布层次生成框架
作者: Jogendra Nath Kundu, R. Venkatesh Babu
备注:Accepted at ICCV 2019
链接:https://arxiv.org/abs/1908.03919
【45】 Almost Surely Asymptotic Freeness for Jacobian Spectrum of Deep Network
标题:深度网络Jacobian谱的几乎必然渐近自由性
作者: Tomohiro Hayase
链接:https://arxiv.org/abs/1908.03901
【46】 HBONet: Harmonious Bottleneck on Two Orthogonal Dimensions
标题:HBONet:两个正交维度上的和谐瓶颈
作者: Duo Li, Anbang Yao
备注:Accepted by ICCV 2019. Code and pretrained models are available at this https URL
链接:https://arxiv.org/abs/1908.03888
【47】 Transcriptional Response of SK-N-AS Cells to Methamidophos
标题:SK-N-AS细胞对甲胺磷的转录反应
作者: Akos Vertes, Maria I. Zavodszky
链接:https://arxiv.org/abs/1908.03841
【48】 AutoGAN: Neural Architecture Search for Generative Adversarial Networks
标题:AutoGAN:生成性对抗网络的神经结构搜索
作者: Xinyu Gong, Zhangyang Wang
备注:accepted by ICCV 2019
链接:https://arxiv.org/abs/1908.03835
【49】 Space-time error estimates for deep neural network approximations for differential equations
标题:微分方程深层神经网络逼近的时空误差估计
作者: Philipp Grohs, Philipp Zimmermann
链接:https://arxiv.org/abs/1908.03833
【50】 DeblurGAN-v2: Deblurring (Orders-of-Magnitude) Faster and Better
标题:deblurGAN-v2:去模糊(数量级)更快更好
作者: Orest Kupyn, Zhangyang Wang
备注:Accepted in ICCV 2019
链接:https://arxiv.org/abs/1908.03826
【51】 Exploring the Effect of an Item's Neighborhood on its Sellability in eCommerce
标题:探索商品的邻域对其在电子商务中可销售性的影响
作者: Saratchandra Indrakanti, Manojkumar Rangasamy Kannadasan
链接:https://arxiv.org/abs/1908.03825
【52】 Conditional Generative Adversarial Networks for Data Augmentation and Adaptation in Remotely Sensed Imagery
标题:遥感图像数据增强和适应的条件生成对抗网络
作者: Jonathan Howe, Aaron A. Reite
链接:https://arxiv.org/abs/1908.03809
【53】 A theory of incremental compression
标题:增量压缩理论
作者: Arthur Franz, Roman Soletskyi
备注:18 pages, 2 figures
链接:https://arxiv.org/abs/1908.03781
【54】 Modeling Engagement Dynamics of Online Discussions using Relativistic Gravitational Theory
标题:用相对论引力理论模拟在线讨论的介入动力学
作者: Subhabrata Dutta, Tanmoy Chakraborty
链接:https://arxiv.org/abs/1908.03770
【55】 Show Me Your Account: Detecting MMORPG Game Bot Leveraging Financial Analysis with LSTM
标题:显示您的帐户:检测MMORPG游戏机器人利用LSTM进行财务分析
作者: Kyung Ho Park, Huy Kang Kim
备注:10 pages, 1 figure, 5 tables, In Proceedings of the 20th World Conference on Information Security and Applications (WISA) 2019
链接:https://arxiv.org/abs/1908.03748
【56】 Estimation of Spectral Clustering Hyper Parameters
标题:谱聚类超参数估计
作者: Sioan Zohar, Chun-Hong Yoon
链接:https://arxiv.org/abs/1908.03747
【57】 Personalized Music Recommendation with Triplet Network
标题:基于三元组网络的个性化音乐推荐
作者: Haoting Liang, Keizo Oyama
链接:https://arxiv.org/abs/1908.03738
【58】 Automatic acute ischemic stroke lesion segmentation using semi-supervised learning
标题:基于半监督学习的急性缺血性卒中病变自动分割
作者: Bin Zhao, Shuxue Ding
链接:https://arxiv.org/abs/1908.03735
【59】 Learning to Explore in Motion and Interaction Tasks
标题:学习在运动和交互任务中探索
作者: Miroslav Bogdanovic, Ludovic Righetti
链接:https://arxiv.org/abs/1908.03731
【60】 User independent Emotion Recognition with Residual Signal-Image Network
标题:基于残差信号-图像网络的独立于用户的情感识别
作者: Guanghao Yin, Ning Zou
链接:https://arxiv.org/abs/1908.03692
【61】 Distance Map Loss Penalty Term for Semantic Segmentation
标题:用于语义分割的距离图丢失惩罚项
作者: Francesco Caliva, Valentina Pedoia
备注:Medical Imaging with Deep Learning (MIDL2019) Conference [arXiv:1907.08612], Extended Abstract
链接:https://arxiv.org/abs/1908.03679
【62】 Recent Advances in Deep Learning for Object Detection
标题:用于目标检测的深度学习的最新进展
作者: Xiongwei Wu, Steven C.H. Hoi
链接:https://arxiv.org/abs/1908.03673
【63】 A Survey of Tuning Parameter Selection for High-dimensional Regression
标题:高维回归整定参数选择综述
作者: Yunan Wu, Lan Wang
链接:https://arxiv.org/abs/1908.03669
【64】 Catching the Phish: Detecting Phishing Attacks using Recurrent Neural Networks (RNNs)
标题:捕获Phish:使用递归神经网络(RNN)检测网络钓鱼攻击
作者: Lukas Halgas, Jason R. C. Nurse
链接:https://arxiv.org/abs/1908.03640
【65】 Emotionless: Privacy-Preserving Speech Analysis for Voice Assistants
标题:无情感:语音助理隐私保护语音分析
作者: Ranya Aloufi, David Boyle
备注:5 pages, 4 figures, privacy Preserving Machine Learning Workshop, CCS 2019
链接:https://arxiv.org/abs/1908.03632
【66】 Vision-based Navigation Using Deep Reinforcement Learning
标题:基于视觉的深度强化学习导航
作者: Jonáš Kulhánek, Robert Babuška
备注:ECMR 2019: European Conference on Mobile Robots
链接:https://arxiv.org/abs/1908.03627
【67】 Continuous-Variable Quantum Key Distribution with a Real Local Oscillator and without Auxiliary Signals
标题:具有实本振子和无辅助信号的连续变量量子密钥分配
作者: Sebastian Kleis, Christian G. Schaeffer
链接:https://arxiv.org/abs/1908.03625
【68】 Learning physics-based reduced-order models for a single-injector combustion process
标题:基于学习物理的单喷油器燃烧过程降阶模型
作者: Renee Swischuk, Karen Willcox
链接:https://arxiv.org/abs/1908.03620
【69】 RuDaCoP: The Dataset for Smartphone-based Intellectual Pedestrian Navigation
标题:RuDaCoP:基于智能手机的智能行人导航数据集
作者: Andrey Bayev, Mikhail Pikhletsky
链接:https://arxiv.org/abs/1908.03609
【70】 Concepts and Applications of Conformal Prediction in Computational Drug Discovery
标题:计算药物发现中的共形预测概念及其应用
作者: Isidro Cortés-Ciriano, Andreas Bender
链接:https://arxiv.org/abs/1908.03569
翻译:腾讯翻译君
网友评论