美文网首页
爬虫学习(四)多线程

爬虫学习(四)多线程

作者: 拼了老命在学习 | 来源:发表于2020-07-15 22:42 被阅读0次

1.多线程

简单说就是在一个任务进程中,采用多个线程来分别完成子任务,从而提高运行速度及效率,需要用到的模块为threading模块。
实例:

import threading
import time

def coding():
    for x in range(1,4):
        print('正在写%s' %x)
        time.sleep(1)

def drawing():
    for x in  range(1,4):
        print("正在画%s" %x)
        time.sleep(1)

def main():
    t1 = threading.Thread(target=coding)
    t2 = threading.Thread(target=drawing)
    t1.start()
    t2.start()

if __name__ == '__main__':
    main()

常用方法

threading.enumerate() 查看线程数
threading.current_thread() 查看线程的名字

继承自threading.Thread类
实例:

import threading
import time

class coding(threading.Thread):
    def run(self):
        for x in range(1,4):
            print('正在写%s' %x)
            time.sleep(1)

class drawing(threading.Thread):
    def run(self):
        for x in  range(1,4):
            print("正在画%s" %x)
            time.sleep(1)

def main():
    t1 = coding()
    t2 = drawing()
    t1.start()
    t2.start()

if __name__ == '__main__':
    main()

2.多线程全局变量冲突的解决

import threading
value = 0
glock = threading.Lock()
def add_value():
    global value
    glock.acquire() #上锁,其余线程等待中
    for x in range(1000000):
        value += 1
    glock.release()#释放
    print(value)
def main():
    for x in range(2):
        t = threading.Thread(target=add_value)
        t.start()
if __name__ == '__main__':
    main()

lock版生产者与消费者

import threading
import time
import random

gmoney = 1000
glock = threading.Lock()
totaltimes = 10
times = 0

class producer(threading.Thread):
    def run(self):
        global gmoney,totaltimes,times
        while True:
            money = random.randint(100,1000)
            glock.acquire()
            if times>=totaltimes:
                glock.release()
                break
            gmoney = gmoney+money
            print('%s生产者生产了%d元,剩余%d元' %(threading.current_thread(),money,gmoney))
            times = times+1
            glock.release()
            time.sleep(0.5)
class customer(threading.Thread):
    def run(self):
        global gmoney
        while True:
            money = random.randint(100,1000)
            glock.acquire()
            if gmoney>=money:
                gmoney -= money
                print("%s消费者消费了%d元,还剩%d元" %(threading.current_thread(),money,gmoney))
            else:
                if times>=totaltimes:
                    glock.release()
                    break
                print("%s消费者准备消费%d元,还剩%d元,不足" %(threading.current_thread(),money,gmoney))
            glock.release()
            time.sleep(0.5)

def main():
    for x in range(3):
        t = customer(name="消费者线程%d" %x)
        t.start()
    for x in range(5):
        t = producer(name='生产者线程%d' %x)
        t.start()

if __name__ == '__main__':
    main()

condition版生产者与消费者(节省CPU资源)

import threading
import time
import random

gmoney = 1000
gcondition = threading.Condition()
totaltimes = 10
times = 0

class producer(threading.Thread):
    def run(self):
        global gmoney,totaltimes,times
        while True:
            money = random.randint(100,1000)
            gcondition.acquire()
            if times>=totaltimes:
                gcondition.release()
                break
            gmoney = gmoney+money
            print('%s生产者生产了%d元,剩余%d元' %(threading.current_thread(),money,gmoney))
            times = times+1
            gcondition.notify_all() #唤醒所有等待的线程
            gcondition.release()
            time.sleep(0.5)

class customer(threading.Thread):
    def run(self):
        global gmoney
        while True:
            money = random.randint(100,1000)
            gcondition.acquire()
            while gmoney<money: #判断钱是否足够
                if times>=totaltimes: #判断生产者是否生产完
                    gcondition.release()
                    return
                print("%s消费者准备消费%d元,还剩%d元,不足" % (threading.current_thread(), money, gmoney))
                gcondition.wait() #钱不足时将线程处于等待状态,生产后唤醒
            gmoney = gmoney-money
            print("%s消费者消费了%d元,还剩%d元" % (threading.current_thread(), money, gmoney))
            gcondition.release()
            time.sleep(0.5)

def main():
    for x in range(3):
        t = customer(name="消费者线程%d" %x)
        t.start()
    for x in range(5):
        t = producer(name='生产者线程%d' %x)
        t.start()

if __name__ == '__main__':
    main()

3.Queue线程安全队列

先进先出队列(Queue),后进先出队列(LifoQueue)
常用操作

from queue import Queue
#创建一个先进先出队列
Queue(maxsize)
#判断队列是否为空
Queue.empty()
#判断队列是否满了
Queue.full()
#获取队列最后一个数据,即最先进入队列的数据
Queue.get()
#将一个数据放到队列中
Queue.Put()

实例:Queue多线程爬取斗图吧表情

import requests
from lxml import etree
from urllib import request
from queue import Queue
import os
import re
import threading

class Producer(threading.Thread):
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.61 Safari/537.36'
    }
    def __init__(self,page_queue,img_queue,*args,**kwargs): #初始化父类属性并新建属性page_queue,img_queue
        super(Producer,self).__init__(*args,**kwargs) #使producer包含父类所有属性
        self.page_queue = page_queue
        self.img_queue = img_queue
    def run(self):
        while True:
            if self.page_queue.empty():
                break
            url = self.page_queue.get()
            self.page_parse(url)
    def page_parse(self,url):
        proxy = {
            'http':'113.195.18.53:9999',
            'http':'114.99.23.137:1133',
            'http':'163.204.244.247:9999',
            'http':'123.207.57.145:1080'

        }
        resp = requests.get(url,headers=self.headers,proxies=proxy)
        text = resp.text
        html = etree.HTML(text)
        imgs = html.xpath("//div[@class='page-content text-center']//img[@class!='gif']") #过滤GIF类型
        for img in imgs:
            img_url = img.get("data-original")
            alt = img.get("alt") #获取图片名
            alt = re.sub(r'[\??\.,,。!!“”\*]','',alt) #去除文字中的特殊符号
            houzhui = os.path.splitext(img_url)[1]#获取后缀
            filename = alt + houzhui #获取完整文件名
            self.img_queue.put((img_url,filename)) #添加到下载队列

class Customer(threading.Thread):
    def __init__(self,page_queue,img_queue,*args,**kwargs):
        super(Customer,self).__init__(*args,**kwargs)
        self.page_queue = page_queue
        self.img_queue = img_queue
    def run(self):
        while True:
            if self.img_queue.empty() and self.page_queue.empty():
                break
            img_url,filename = self.img_queue.get()
            request.urlretrieve(img_url,'imgs/'+filename) #下载图片
            print(filename+"打印成功")

def main():
    page_queue = Queue(100)
    img_queue = Queue(100)
    base_url = 'https://www.doutula.com/photo/list/?page={}'
    for x in range(1,3):
        url = base_url.format(x)
        page_queue.put(url) #添加到解析队列
    for x in range(5): #创建5个生产者,即5个线程
        t = Producer(page_queue,img_queue)
        t.start()
    for x in range(5):
        t = Customer(page_queue,img_queue)
        t.start()

if __name__ == '__main__':
    main()

相关文章

网友评论

      本文标题:爬虫学习(四)多线程

      本文链接:https://www.haomeiwen.com/subject/sduxhktx.html