美文网首页
Going Deeper with Convolutions (

Going Deeper with Convolutions (

作者: 馒头and花卷 | 来源:发表于2020-01-13 21:06 被阅读0次

    @[TOC]

    Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]. computer vision and pattern recognition, 2015: 1-9.

    @article{szegedy2015going,
    title={Going deeper with convolutions},
    author={Szegedy, Christian and Liu, Wei and Jia, Yangqing and Sermanet, Pierre and Reed, Scott and Anguelov, Dragomir and Erhan, Dumitru and Vanhoucke, Vincent and Rabinovich, Andrew},
    pages={1--9},
    year={2015}}

    这里讲的很细, 不多赘诉了.

    代码

    在这里插入图片描述
    """
    代码虽然是"copy"源代码, 但是收获不少.
    虽然参数少, 但是训练得很慢, 是因为要传三次梯度?
    测试集上正确率维0.8682
    """
    
    
    import torch
    import torch.nn as nn
    import torchvision
    import torchvision.transforms as transforms
    import numpy as np
    import os
    
    
    class BasicConv2d(nn.Module):
    
        def __init__(self, in_channels, out_channels, **kwargs):
            super(BasicConv2d, self).__init__()
            self.conv = nn.Conv2d(in_channels, out_channels,
                                  bias=False, **kwargs) #不要偏置
            #eps 为了数值稳定 默认是1e-5
            self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
            self.relu = nn.ReLU(inplace=True)
    
        def forward(self, x):
            x = self.conv(x)
            x = self.bn(x)
            out = self.relu(x)
            return out
    
    class Inception(nn.Module):
    
        def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3,
                     ch5x5red, ch5x5, pool_proj):
            """
            :param in_channels: 输入的通道数
            :param ch1x1:   1x1卷积核的输出通道数
            :param ch3x3red: 3x3一开始的1x1部分的通道数
            :param ch3x3: 3x3后半的3x3部分的通道数
            :param ch5x5: ...
            :param ch5x5red:  ...
            :param pool_proj:  池化层的通道数
            """
            super(Inception, self).__init__()
    
            self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)
    
            self.branch2 = nn.Sequential(
                BasicConv2d(in_channels, ch3x3red, kernel_size=1),
                BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)
            )
    
            #pytorch 这里用的3x3卷积核?
            self.branch3 = nn.Sequential(
                BasicConv2d(in_channels, ch5x5red, kernel_size=1),
                BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2)
            )
    
            self.branch4 = nn.Sequential(
                nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=True),
                BasicConv2d(in_channels, pool_proj, kernel_size=1)
            )
    
        def forward(self, x):
            x1 = self.branch1(x)
            x2 = self.branch2(x)
            x3 = self.branch3(x)
            x4 = self.branch4(x)
            out = (x1, x2, x3, x4)
            return torch.cat(out, 1)
    
    class InceptionAux(nn.Module):
    
        def __init__(self, in_channels, num_classes):
            super(InceptionAux, self).__init__()
            self.avgpool = nn.AdaptiveAvgPool2d((4, 4))
            self.conv = BasicConv2d(in_channels, 128, kernel_size=1)
            #N x 128 x 4 x 4
            self.dense = nn.Sequential(
                nn.Linear(2048, 1024),
                nn.ReLU(inplace=True),
                nn.Dropout(0.7),
                nn.Linear(1024, num_classes)
            )
    
        def forward(self, x):
            x = self.avgpool(x)
            x = self.conv(x)
            x = torch.flatten(x, 1)
            out = self.dense(x)
            return out
    
    class GoogLeNet(nn.Module):
    
        def __init__(self, num_classes=10, aux_logits=True):
            """
            :param num_classes: 类别个数
            :param aux_logits: 是否需要添加辅助训练器
            """
            super(GoogLeNet, self).__init__()
            self.aux_logits =aux_logits
    
            # N x 3 x 224 x 224
            self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
            # N x 64 x 112 x 112
            self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)
            # N x 64 x 56 x 56
            self.conv2 = BasicConv2d(64, 64, kernel_size=1)
            self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
            # N x 192 x 56 x 56
            self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)
            # N x 192 x 28 x 28
    
            self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
            #N x 256 x 28 x 28
            self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
            #N x 480 x 28 x 28
            self.maxpool3 = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)
            #N x 480 x 14 x 14
    
            self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
            #N x 512 x 14 x 14
            self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
            #N x 512 x 14 x 14
            self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
            #N x 512 x 14 x 14
            self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
            #N x 528 x 14 x 14
            self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
            #N x 832 x 14 x 14
            self.maxpool4 = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)
            #N x 832 x 7 x 7
    
            self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
            #N x 832 x 7 x 7
            self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)
            #N x 1024 x 7 x 7
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
            #N x 1024 x 1 x 1
            self.drop = nn.Dropout(0.4)
            self.fc = nn.Linear(1024, num_classes)
    
            if self.aux_logits:
                self.aux1 = InceptionAux(512, num_classes)
                self.aux2 = InceptionAux(528, num_classes)
    
        def forward(self, x):
            x = self.conv1(x)
            x = self.maxpool1(x)
            x = self.conv2(x)
            x = self.conv3(x)
            x = self.maxpool2(x)
    
            x = self.inception3a(x)
            x = self.inception3b(x)
            x = self.maxpool3(x)
    
            x = self.inception4a(x)
            if self.aux_logits and self.training:
                aux1 = self.aux1(x)
            x = self.inception4b(x)
            x = self.inception4c(x)
            x = self.inception4d(x)
            if self.aux_logits and self.training:
                aux2 = self.aux2(x)
            x = self.inception4e(x)
            x = self.maxpool4(x)
    
            x = self.inception5a(x)
            x = self.inception5b(x)
    
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.drop(x)
            out = self.fc(x)
    
            if self.aux_logits and self.training:
                return (out, aux1, aux2)
            return out
    
    
    
    
    
    class Train:
    
        def __init__(self, lr=0.01, momentum=0.9, weight_decay=0.0001):
            self.net = GoogLeNet()
            self.criterion = nn.CrossEntropyLoss()
            self.opti = torch.optim.SGD(self.net.parameters(),
                                        lr=lr, momentum=momentum,
                                        weight_decay=weight_decay)
            self.gpu()
            self.generate_path()
            self.acc_rates = []
            self.errors = []
    
    
        def gpu(self):
            self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
            if torch.cuda.device_count() > 1:
                print("Let'us use %d GPUs" % torch.cuda.device_count())
                self.net = nn.DataParallel(self.net)
            self.net = self.net.to(self.device)
    
    
    
        def generate_path(self):
            """
            生成保存数据的路径
            :return:
            """
            try:
                os.makedirs('./paras')
                os.makedirs('./logs')
                os.makedirs('./infos')
            except FileExistsError as e:
                pass
            name = self.net.__class__.__name__
            paras = os.listdir('./paras')
            logs = os.listdir('./logs')
            infos = os.listdir('./infos')
            number = max((len(paras), len(logs), len(infos)))
            self.para_path = "./paras/{0}{1}.pt".format(
                name,
                number
            )
    
            self.log_path = "./logs/{0}{1}.txt".format(
                name,
                number
            )
            self.info_path = "./infos/{0}{1}.npy".format(
                name,
                number
            )
    
    
        def log(self, strings):
            """
            运行日志
            :param strings:
            :return:
            """
            # a 往后添加内容
            with open(self.log_path, 'a', encoding='utf8') as f:
                f.write(strings)
    
        def save(self):
            """
            保存网络参数
            :return:
            """
            torch.save(self.net.state_dict(), self.para_path)
    
        def derease_lr(self, multi=0.96):
            """
            降低学习率
            :param multi:
            :return:
            """
            self.opti.param_groups[0]['lr'] *= multi
    
    
        def train(self, trainloder, epochs=50):
            data_size = len(trainloder) * trainloder.batch_size
            part = int(trainloder.batch_size / 2)
            for epoch in range(epochs):
                running_loss = 0.
                total_loss = 0.
                acc_count = 0.
                if (epoch + 1) % 8 is 0:
                    self.derease_lr()
                    self.log(#日志记录
                        "learning rate change!!!\n"
                    )
                for i, data in enumerate(trainloder):
                    imgs, labels = data
                    imgs = imgs.to(self.device)
                    labels = labels.to(self.device)
                    (out, aux1, aux2) = self.net(imgs)
                    loss1 = self.criterion(out, labels)
                    loss2 = self.criterion(aux1, labels)
                    loss3 = self.criterion(aux2, labels)
                    loss = 0.4 * loss1 + 0.3 * loss2 + 0.3 * loss3
                    _, pre = torch.max(out, 1)  #判断是否判断正确
                    acc_count += (pre == labels).sum().item() #加总对的个数
    
                    self.opti.zero_grad()
                    loss.backward()
                    self.opti.step()
    
                    running_loss += loss.item()
    
                    if (i+1) % part is 0:
                        strings = "epoch {0:<3} part {1:<5} loss: {2:<.7f}\n".format(
                            epoch, i, running_loss / part
                        )
                        self.log(strings)#日志记录
                        total_loss += running_loss
                        running_loss = 0.
                self.acc_rates.append(acc_count / data_size)
                self.errors.append(total_loss / data_size)
                self.log( #日志记录
                    "Accuracy of the network on %d train images: %d %%\n" %(
                        data_size, acc_count / data_size * 100
                    )
                )
                self.save() #保存网络参数
            #保存一些信息画图用
            np.save(self.info_path, {
                'acc_rates': np.array(self.acc_rates),
                'errors': np.array(self.errors)
            })
    
    
    
    
    if __name__ == "__main__":
    
        root = "../../data"
    
        trainset = torchvision.datasets.CIFAR10(root=root, train=True,
                                              download=False,
                                              transform=transforms.Compose(
                                                  [transforms.Resize(224),
                                                   transforms.ToTensor(),
                                                   transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
                                              ))
    
        train_loader = torch.utils.data.DataLoader(trainset, batch_size=128,
                                                  shuffle=True, num_workers=8,
                                                   pin_memory=True)
    
        dog = Train()
        dog.train(train_loader, epochs=1000)
    
    

    相关文章

      网友评论

          本文标题:Going Deeper with Convolutions (

          本文链接:https://www.haomeiwen.com/subject/shinactx.html