美文网首页
神经网络01

神经网络01

作者: 平头哥2 | 来源:发表于2020-09-14 16:07 被阅读0次

    激活函数

    import numpy as np
    import matplotlib.pylab as plt
    
    def step_function(x):
        return np.array(x> 0, dtype=np.int)
        
    def sigmoid(x):
        return 1/(1 + np.exp(-x))
    
    x =  np.arange(-6, 6, 0.1)
    print(x)
    
    y1 = step_function(x)
    print(y1)
    y2 = sigmoid(x)
    print(y2)
    
     
    fig, ax1 = plt.subplots(2,1, figsize=(12,9))
    
    #ax1 = ax1.twinx()                         # 让2个子图的x轴一样,同时创建副坐标轴。
    
    ax1[0][0].plot(x, y1)
    ax1[1][0].plot(x, y2)
    
    plt.tight_layout()
    

    矩阵乘法

    import numpy as np
    #import matplotlib.pylab as plt
    
    
    
    A = np.array([[1,2],[3,4]])
    
    B = np.array([[5,6],[7,8]])  
    
    print(np.dot(A,B))
    
    
    A1 = np.array([[1,2,3],[3,4,5]])
    B1 = np.array([[1,2],[3,4],[4,5]])  # 3 2 
    
    C = np.dot(A1,B1)
    
    
    print(C)
    print(C.shape) # (2, 2)
    print(np.ndim(C)) # 2
    
    
    A2 = np.array([7,8])  # 1 2
    print(A2 ) # [7 8]
    A3 = np.array([[7],[8]])
    print(A3 ) # [7 8]
    
    
    print(np.dot(B1,A2)) 
    
    print(np.dot(B1,A3)) 
    
    # 神经网络的内积
    W = np.array([[1,3,5],[2,4,6]])
    X = np.array([1,2])  
    print(np.dot(X,W)) # [ 5 11 17]
    
    W1 = np.array([[1,2],[3,4],[5,6]])
    X1 = np.array([[1],[2]]) 
    print(np.dot(W1,X1))  
    

    神经网络前向计算

    def sigmoid(x):
        return 1/(1 + np.exp(-x))
    
    import numpy as np
    #import matplotlib.pylab as plt
    
    
    X = np.array([1.0,0.5])
    W1 = np.array([[0.1,0.3,0.5],[0.2,0.4,0.6]])
    B1 = np.array([0.1,0.2,0.3])
    
    
    print(X.shape)   # (2,)
    print(W1.shape) # (2, 3)
    print(B1.shape) # (3,)
      
    
    # 第一层神经网络的传递
    A1 = np.dot(X, W1) + B1
    
    print(A1) # [0.3 0.7 1.1]
    
    # 使用激活函数
    Z1 = sigmoid(A1)
    
    print(Z1) #  [0.57444252 0.66818777 0.75026011]
    
    
    # 第二层神经网络的传递
    W2 = np.array([[0.1,0.4],[0.2,0.5],[0.3,0.6]])
    B2 = np.array([0.1,0.2])
    A2 = np.dot(Z1, W2) + B2
    print(A2) # [0.51615984 1.21402696]
    Z2 = sigmoid(A2)
    print(Z2) #[0.62624937 0.7710107 ]
        
        
        
    # 第二层到输出层的传递
    
    # 输出层的激活函数
    # 一般地: 回归问题可以使用恒等函数
    # 二元分类问题可以使用 sigmoid 函数
    # 多元分类问题可以使用 softmax 函数
    def identity_function(x):
        return x
         
    W3 = np.array([[0.1,0.3],[0.2,0.4]])    
    B3 = np.array([0.1,0.2]) 
    A3 = np.dot(Z2, W3) + B3
    print(A2)  # [0.51615984 1.21402696]
    Y = identity_function(A3) 
    print(Y)  # [0.31682708 0.69627909]
    

    代码小结

    import numpy as np
    
    def sigmoid(x):
        return 1/(1 + np.exp(-x))
    
    def identity_function(x):
        return x
    
    def init_network():
        network = {}
        network['W1'] = np.array([[0.1,0.3,0.5],[0.2,0.4,0.6]])
        network['B1'] = np.array([0.1,0.2,0.3])
        network['W2'] = np.array([[0.1,0.4],[0.2,0.5],[0.3,0.6]])
        network['B2'] = np.array([0.1,0.2])
        network['W3'] = np.array([[0.1,0.3],[0.2,0.4]])
        network['B3'] = np.array([0.1,0.2]) 
        
        return network
    
    
    def forward(network, X):
        W1, W2, W3 = network['W1'], network['W2'], network['W3']
        B1, B2, B3 = network['B1'], network['B2'], network['B3']
        
        A1 = np.dot(X, W1) + B1
        Z1 = sigmoid(A1)
        A2 = np.dot(Z1, W2) + B2
        Z2 = sigmoid(A2)
        A3 = np.dot(Z2, W3) + B3
        Y = identity_function(A3)
        
        return Y
    
    network2 = init_network()
    
    X = np.array([1.0,0.5])
    Y = forward(network2, X)
    print(Y)  # [0.31682708 0.69627909]
    

    相关文章

      网友评论

          本文标题:神经网络01

          本文链接:https://www.haomeiwen.com/subject/shpzektx.html