Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
AC代码
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m=grid.size(),n=grid[0].size();
vector<vector<int>> path(m);
for (auto& row : path) row.resize(n);
for (int i = 0; i != m; ++i) {
for (int j = 0; j != n; ++j) {
if (i == 0) {
if (j == 0)
path[i][j] = grid[i][j];
else
path[i][j] = path[i][j - 1] + grid[i][j];
}
else if (j == 0) {
path[i][j] = path[i - 1][j] + grid[i][j];
}
else
path[i][j] =
min(path[i - 1][j], path[i][j - 1]) + grid[i][j];
}
}
return path[m - 1][n - 1];
}
};
总结
动态规划的思想与上题一致,将int改为short可减少内存占用
网友评论