美文网首页OpenGL
使用openGLES给图片添加马赛克效果

使用openGLES给图片添加马赛克效果

作者: Jeffery_zc | 来源:发表于2020-08-14 17:06 被阅读0次

    1.自定义着色器加载图片

    • 创建顶点着色器文件和片元着色器文件
      Normal.vsh:
    
    attribute vec4 Position;
    attribute vec2 TextureCoords;
    varying vec2 TextureCoordsVarying;
    
    void main (void) {
        gl_Position = Position;
        TextureCoordsVarying = TextureCoords;
    }
    
    

    Normal.fsh:

    precision highp float;
    uniform sampler2D Texture;
    varying vec2 TextureCoordsVarying;
    
    void main (void) {
    
        vec4 mask = texture2D(Texture, TextureCoordsVarying);
        gl_FragColor = vec4(mask.rgb, 1.0);
    }
    
    
    • 初始化
    - (void)filterInit {
        
        //1. 初始化上下文并设置为当前上下文
        self.context = [[EAGLContext alloc] initWithAPI:kEAGLRenderingAPIOpenGLES2];
        [EAGLContext setCurrentContext:self.context];
        
        //2.开辟顶点数组内存空间
        self.vertices = malloc(sizeof(SenceVertex) * 4);
        
        //3.初始化顶点(0,1,2,3)的顶点坐标以及纹理坐标
        self.vertices[0] = (SenceVertex){{-1, 1, 0}, {0, 1}};
        self.vertices[1] = (SenceVertex){{-1, -1, 0}, {0, 0}};
        self.vertices[2] = (SenceVertex){{1, 1, 0}, {1, 1}};
        self.vertices[3] = (SenceVertex){{1, -1, 0}, {1, 0}};
        
        //4.创建图层(CAEAGLLayer)
        CAEAGLLayer *layer = [[CAEAGLLayer alloc] init];
        //设置图层frame
        layer.frame = CGRectMake(0, 100, self.view.frame.size.width, self.view.frame.size.width);
        //设置图层的scale
        layer.contentsScale = [[UIScreen mainScreen] scale];
        //给View添加layer
        [self.view.layer addSublayer:layer];
        
        //5.绑定渲染缓存区
        [self bindRenderLayer:layer];
        
        //6.获取处理的图片路径
        NSString *imagePath = [[[NSBundle mainBundle] resourcePath] stringByAppendingPathComponent:@"kobe.jpg"];
      
        //读取图片
        UIImage *image = [UIImage imageWithContentsOfFile:imagePath];
        //将JPG图片转换成纹理图片
        GLuint textureID = [self createTextureWithImage:image];
        //设置纹理ID
        self.textureID = textureID;  // 将纹理 ID 保存,方便后面切换滤镜的时候重用
        
        //7.设置视口
        glViewport(0, 0, self.drawableWidth, self.drawableHeight);
        
        //8.设置顶点缓存区
        GLuint vertexBuffer;
        glGenBuffers(1, &vertexBuffer);
        glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer);
        GLsizeiptr bufferSizeBytes = sizeof(SenceVertex) * 4;
        glBufferData(GL_ARRAY_BUFFER, bufferSizeBytes, self.vertices, GL_STATIC_DRAW);
        
        
        //9.设置默认着色器
        [self setupNormalShaderProgram]; // 一开始选用默认的着色器
        
        //10.将顶点缓存保存,退出时才释放
        self.vertexBuffer = vertexBuffer;
    }
    //获取渲染缓存区的宽
    - (GLint)drawableWidth {
        GLint backingWidth;
        glGetRenderbufferParameteriv(GL_RENDERBUFFER, GL_RENDERBUFFER_WIDTH, &backingWidth);
        return backingWidth;
    }
    //获取渲染缓存区的高
    - (GLint)drawableHeight {
        GLint backingHeight;
        glGetRenderbufferParameteriv(GL_RENDERBUFFER, GL_RENDERBUFFER_HEIGHT, &backingHeight);
        return backingHeight;
    }
    
    • 绑定渲染缓存区和帧缓存区
    - (void)bindRenderLayer:(CALayer <EAGLDrawable> *)layer {
        
        //1.渲染缓存区,帧缓存区对象
        GLuint renderBuffer;
        GLuint frameBuffer;
        
        //2.获取帧渲染缓存区名称,绑定渲染缓存区以及将渲染缓存区与layer建立连接
        glGenRenderbuffers(1, &renderBuffer);
        glBindRenderbuffer(GL_RENDERBUFFER, renderBuffer);
        [self.context renderbufferStorage:GL_RENDERBUFFER fromDrawable:layer];
        
        //3.获取帧缓存区名称,绑定帧缓存区以及将渲染缓存区附着到帧缓存区上
        glGenFramebuffers(1, &frameBuffer);
        glBindFramebuffer(GL_FRAMEBUFFER, frameBuffer);
        glFramebufferRenderbuffer(GL_FRAMEBUFFER,
                                  GL_COLOR_ATTACHMENT0,
                                  GL_RENDERBUFFER,
                                  renderBuffer);
    }
    
    
    • 从图片中加载纹理
    - (GLuint)createTextureWithImage:(UIImage *)image {
        
        //1、将 UIImage 转换为 CGImageRef
        CGImageRef cgImageRef = [image CGImage];
        //判断图片是否获取成功
        if (!cgImageRef) {
            NSLog(@"Failed to load image");
            exit(1);
        }
        //2、读取图片的大小,宽和高
        GLuint width = (GLuint)CGImageGetWidth(cgImageRef);
        GLuint height = (GLuint)CGImageGetHeight(cgImageRef);
        //获取图片的rect
        CGRect rect = CGRectMake(0, 0, width, height);
        
        //获取图片的颜色空间
        CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();
        //3.获取图片字节数 宽*高*4(RGBA)
        void *imageData = malloc(width * height * 4);
        //4.创建上下文
        /*
         参数1:data,指向要渲染的绘制图像的内存地址
         参数2:width,bitmap的宽度,单位为像素
         参数3:height,bitmap的高度,单位为像素
         参数4:bitPerComponent,内存中像素的每个组件的位数,比如32位RGBA,就设置为8
         参数5:bytesPerRow,bitmap的没一行的内存所占的比特数
         参数6:colorSpace,bitmap上使用的颜色空间  kCGImageAlphaPremultipliedLast:RGBA
         */
        CGContextRef context = CGBitmapContextCreate(imageData, width, height, 8, width * 4, colorSpace, kCGImageAlphaPremultipliedLast | kCGBitmapByteOrder32Big);
        
        //将图片翻转过来(图片默认是倒置的)
        CGContextTranslateCTM(context, 0, height);
        CGContextScaleCTM(context, 1.0f, -1.0f);
        CGColorSpaceRelease(colorSpace);
        CGContextClearRect(context, rect);
        
        //对图片进行重新绘制,得到一张新的解压缩后的位图
        CGContextDrawImage(context, rect, cgImageRef);
        
        //设置图片纹理属性
        //5. 获取纹理ID
        GLuint textureID;
        glGenTextures(1, &textureID);
        glBindTexture(GL_TEXTURE_2D, textureID);
        
        //6.载入纹理2D数据
        /*
         参数1:纹理模式,GL_TEXTURE_1D、GL_TEXTURE_2D、GL_TEXTURE_3D
         参数2:加载的层次,一般设置为0
         参数3:纹理的颜色值GL_RGBA
         参数4:宽
         参数5:高
         参数6:border,边界宽度
         参数7:format
         参数8:type
         参数9:纹理数据
         */
        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, imageData);
        
        //7.设置纹理属性
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
        
        //8.绑定纹理
        /*
         参数1:纹理维度
         参数2:纹理ID,因为只有一个纹理,给0就可以了。
         */
        glBindTexture(GL_TEXTURE_2D, 0);
        
        //9.释放context,imageData
        CGContextRelease(context);
        free(imageData);
        
        //10.返回纹理ID
        return textureID;
    }
    
    • 初始化着色器程序
    
    - (void)setupNormalShaderProgram {
        //设置着色器程序
        [self setupShaderProgramWithName:@"Normal"];
    }
    
    
    // 初始化着色器程序
    - (void)setupShaderProgramWithName:(NSString *)name {
        //1. 获取着色器program
        GLuint program = [self programWithShaderName:name];
        
        //2. use Program
        glUseProgram(program);
        
        //3. 获取Position,Texture,TextureCoords 的索引位置
        GLuint positionSlot = glGetAttribLocation(program, "Position");
        GLuint textureSlot = glGetUniformLocation(program, "Texture");
        GLuint textureCoordsSlot = glGetAttribLocation(program, "TextureCoords");
        
        //4.激活纹理,绑定纹理ID
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_2D, self.textureID);
        
        //5.纹理sample
        glUniform1i(textureSlot, 0);
        
        //6.打开positionSlot 属性并且传递数据到positionSlot中(顶点坐标)
        glEnableVertexAttribArray(positionSlot);
        glVertexAttribPointer(positionSlot, 3, GL_FLOAT, GL_FALSE, sizeof(SenceVertex), NULL + offsetof(SenceVertex, positionCoord));
        
        //7.打开textureCoordsSlot 属性并传递数据到textureCoordsSlot(纹理坐标)
        glEnableVertexAttribArray(textureCoordsSlot);
        glVertexAttribPointer(textureCoordsSlot, 2, GL_FLOAT, GL_FALSE, sizeof(SenceVertex), NULL + offsetof(SenceVertex, textureCoord));
        
        //8.保存program,界面销毁则释放
        self.program = program;
        
        glUseProgram(self.program);
          //绑定buffer
          glBindBuffer(GL_ARRAY_BUFFER, self.vertexBuffer);
          ;
          
          // 清除画布
          glClear(GL_COLOR_BUFFER_BIT);
          glClearColor(1, 1, 1, 1);
          
          // 重绘
          glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
          //渲染到屏幕上
          [self.context presentRenderbuffer:GL_RENDERBUFFER];
    }
    
    
    • 编译链接着色器和program
    #pragma mark -shader compile and link
    //link Program
    - (GLuint)programWithShaderName:(NSString *)shaderName {
        //1. 编译顶点着色器/片元着色器
        GLuint vertexShader = [self compileShaderWithName:shaderName type:GL_VERTEX_SHADER];
        GLuint fragmentShader = [self compileShaderWithName:shaderName type:GL_FRAGMENT_SHADER];
        
        //2. 将顶点/片元附着到program
        GLuint program = glCreateProgram();
        glAttachShader(program, vertexShader);
        glAttachShader(program, fragmentShader);
        
        //3.linkProgram
        glLinkProgram(program);
        
        //4.检查是否link成功
        GLint linkSuccess;
        glGetProgramiv(program, GL_LINK_STATUS, &linkSuccess);
        if (linkSuccess == GL_FALSE) {
            GLchar messages[256];
            glGetProgramInfoLog(program, sizeof(messages), 0, &messages[0]);
            NSString *messageString = [NSString stringWithUTF8String:messages];
            NSAssert(NO, @"program链接失败:%@", messageString);
            exit(1);
        }
        //5.返回program
        return program;
    }
    
    //编译shader代码
    - (GLuint)compileShaderWithName:(NSString *)name type:(GLenum)shaderType {
        
        //1.获取shader 路径
        NSString *shaderPath = [[NSBundle mainBundle] pathForResource:name ofType:shaderType == GL_VERTEX_SHADER ? @"vsh" : @"fsh"];
        NSError *error;
        NSString *shaderString = [NSString stringWithContentsOfFile:shaderPath encoding:NSUTF8StringEncoding error:&error];
        if (!shaderString) {
            NSAssert(NO, @"读取shader失败");
            exit(1);
        }
        
        //2. 创建shader->根据shaderType
        GLuint shader = glCreateShader(shaderType);
        
        //3.获取shader source
        const char *shaderStringUTF8 = [shaderString UTF8String];
        int shaderStringLength = (int)[shaderString length];
        glShaderSource(shader, 1, &shaderStringUTF8, &shaderStringLength);
        
        //4.编译shader
        glCompileShader(shader);
        
        //5.查看编译是否成功
        GLint compileSuccess;
        glGetShaderiv(shader, GL_COMPILE_STATUS, &compileSuccess);
        if (compileSuccess == GL_FALSE) {
            GLchar messages[256];
            glGetShaderInfoLog(shader, sizeof(messages), 0, &messages[0]);
            NSString *messageString = [NSString stringWithUTF8String:messages];
            NSAssert(NO, @"shader编译失败:%@", messageString);
            exit(1);
        }
        //6.返回shader
        return shader;
    }
    
    • 结果


      无效果.png

    2.马赛克效果

    马赛克效果就是图片的一块相当大小的区域用同一个颜色表示出来,可以认为是大规模的降低图片的分辨率,而让图像的一些细节隐藏起来。

    2.1 普通马赛克
    • 执行效果


      普通马赛克效果.png
    • 思路


      计算思路.png
    • 修改片元着色器文件
    注释:
    TexSize:纹理图片大小
    mosaicSize:一个马赛克的大小
    floor(x):GLSL内建函数,返回⼩于/等于X的最大整数值
    
    precision highp float;
    uniform sampler2D Texture;
    varying vec2 TextureCoordsVarying;
    
    const vec2 TexSize = vec2(400,400);
    const vec2 mosaicSize = vec2(20,20);
    
    void main () {
    
        vec2 maskXY = vec2(TextureCoordsVarying.x * TexSize.x,TextureCoordsVarying.y * TexSize.y);
        vec2 mosaicXY = vec2(floor(maskXY.x/mosaicSize.x)*mosaicSize.x,floor(maskXY.y/mosaicSize.y)*mosaicSize.y);
        
        vec2 newTexureCoord = vec2(mosaicXY.x/TexSize.x,mosaicXY.y/TexSize.y);
        vec4 mask = texture2D(Texture, newTexureCoord);
        gl_FragColor = mask;
    }
    
    
    2.2 六边形马赛克

    六边形马赛克的效果就是让一张图片,分割成一个一个由六边形组成的图片,让每个六边形的颜色相同,为了方便,取六边形的中心点作为颜色值。
    我们取六边形的中心点连接,可以画出一个矩阵:

    六边形马赛克01.png
    通过计算可以得到,这些矩阵的长宽比为3:√3。假设六边形的边长为LEN,我们设定的矩阵比例为3LEN : √3LEN ,那么屏幕上的任意点(x, y)所对应的矩阵坐标为(int(x/(3LEN)), int(y/ (√3LEN)))。
    结论:wx,wy -> 表示纹理坐标在所对应的矩阵坐标为:
    int wx = int(x /( 1.5 * length)); int wy = int(y /(TR * length));
    那么我们怎么确定当前点到底显示什么颜色呢?
    六边形马赛克02.png
    通过上图可以看到,红点距离d2的蓝点更近一点,因此我们选取d2的蓝点作为统一的颜色。
    坐标计算

    我们将六边形的中心点连接起来,最终可以得到两种矩形:


    矩形1.png 矩形2.png

    我们知道纹理坐标通过映射后可以得到如下图的坐标:


    纹理映射坐标.png
    我们在矩形中画一条线,就可以得到上图的2种矩形,那么此时的矩形的纹理坐标则是:
    左上:vec2(length * 1.5 * float(wx), length * TR * float(wy));

    右上:vec2(length * 1.5 * float(wx + 1), length * TR * float(wy));
    左下:vec2(length * 1.5 * float(wx), length * TR * float(wy + 1));
    右下:vec2(length * 1.5 * float(wx + 1), length * TR * float(wy + 1));


    坐标计算.png

    注:
    length:六边形边长;
    1.5:矩形宽的比例,length * 1/2 + length * 1/2 + length * cos(60°);
    TR:值为0.8666025,矩形长的比例 length * sin(60°);
    当纹理坐标计算好,我们就需要判断当前的矩形是属于上图中的矩形1还是矩形2。

    矩形判断.png
    通过上图,我们可以通过奇偶判断当前是属于哪一个矩形,如果当前是偶数行偶数列或者奇数行奇数列,则是上图的矩形1,如果当前是奇数行偶数列或者偶数行奇数列,则是上图的矩形2。当矩形是上图的矩形1时,我们求的是左上和右下2个点,因为这2个点才睡六边形的中心点;同理,当矩形为上图中的矩形2时,我们求的是右上和左下2个点。
    修改片元着色器.fsh
    precision highp float;
    uniform sampler2D Texture;
    varying vec2 TextureCoordsVarying;
    
    const float mosaicSize = 0.03;
    
    void main (void)
    {
        float length = mosaicSize;
        
        float TR = 0.866025;
        float TB = 1.5;
        
        float x = TextureCoordsVarying.x;
        float y = TextureCoordsVarying.y;
        
        int wx = int(x / TB / length);
        int wy = int(y / TR / length);
        vec2 v1, v2, vn;
        
        if (wx/2 * 2 == wx) {
            if (wy/2 * 2 == wy) {
                //(0,0),(1,1)
                v1 = vec2(length * 1.5 * float(wx), length * TR * float(wy));
                v2 = vec2(length * 1.5 * float(wx + 1), length * TR * float(wy + 1));
            } else {
                //(0,1),(1,0)
                v1 = vec2(length * 1.5 * float(wx), length * TR * float(wy + 1));
                v2 = vec2(length * 1.5 * float(wx + 1), length * TR * float(wy));
            }
        }else {
            if (wy/2 * 2 == wy) {
                //(0,1),(1,0)
                v1 = vec2(length * 1.5 * float(wx), length * TR * float(wy + 1));
                v2 = vec2(length * 1.5 * float(wx + 1), length * TR * float(wy));
            } else {
                //(0,0),(1,1)
                v1 = vec2(length * 1.5 * float(wx), length * TR * float(wy));
                v2 = vec2(length * 1.5 * float(wx + 1), length * TR * float(wy + 1));
            }
        }
        
        float s1 = sqrt(pow(v1.x - x, 2.0) + pow(v1.y - y, 2.0));
        float s2 = sqrt(pow(v2.x - x, 2.0) + pow(v2.y - y, 2.0));
        if (s1 < s2) {
            vn = v1;
        } else {
            vn = v2;
        }
        vec4 color = texture2D(Texture, vn);
        
        gl_FragColor = color;
        
    }
    
    
    效果
    效果.png
    2.3 三角形马赛克
    三角形马赛克.png

    由图可知,一个六边形可以由6个三角形组成,因此,我们需要先画出一个六边形,再判断当前的颜色值处于哪一个三角形里。这里,我们是由角度来判断当前的点处于哪个三角形。

    修改片元着色器.fsh

    因为是对纹理坐标进行修改,所以我们在片元着色器中进行修改

    precision highp float;
    uniform sampler2D Texture;
    varying vec2 TextureCoordsVarying;
    
    float mosaicSize = 0.03;
    
    void main (void){
        
        const float TR = 0.866025;
        const float PI6 = 0.523599;
        
        float x = TextureCoordsVarying.x;
        float y = TextureCoordsVarying.y;
        
     
        int wx = int(x/(1.5 * mosaicSize));
        int wy = int(y/(TR * mosaicSize));
        
        vec2 v1, v2, vn;
        
        if (wx / 2 * 2 == wx) {
            if (wy/2 * 2 == wy) {
                v1 = vec2(mosaicSize * 1.5 * float(wx), mosaicSize * TR * float(wy));
                v2 = vec2(mosaicSize * 1.5 * float(wx + 1), mosaicSize * TR * float(wy + 1));
            } else {
                v1 = vec2(mosaicSize * 1.5 * float(wx), mosaicSize * TR * float(wy + 1));
                v2 = vec2(mosaicSize * 1.5 * float(wx + 1), mosaicSize * TR * float(wy));
            }
        } else {
            if (wy/2 * 2 == wy) {
                v1 = vec2(mosaicSize * 1.5 * float(wx), mosaicSize * TR * float(wy + 1));
                v2 = vec2(mosaicSize * 1.5 * float(wx+1), mosaicSize * TR * float(wy));
            } else {
                v1 = vec2(mosaicSize * 1.5 * float(wx), mosaicSize * TR * float(wy));
                v2 = vec2(mosaicSize * 1.5 * float(wx + 1), mosaicSize * TR * float(wy+1));
            }
        }
    
        float s1 = sqrt(pow(v1.x - x, 2.0) + pow(v1.y - y, 2.0));
        float s2 = sqrt(pow(v2.x - x, 2.0) + pow(v2.y - y, 2.0));
    
        if (s1 < s2) {
            vn = v1;
        } else {
            vn = v2;
        }
        
        vec4 mid = texture2D(Texture, vn);
        float a = atan((x - vn.x)/(y - vn.y));
    
        vec2 area1 = vec2(vn.x, vn.y - mosaicSize * TR / 2.0);
        vec2 area2 = vec2(vn.x + mosaicSize / 2.0, vn.y - mosaicSize * TR / 2.0);
        vec2 area3 = vec2(vn.x + mosaicSize / 2.0, vn.y + mosaicSize * TR / 2.0);
        vec2 area4 = vec2(vn.x, vn.y + mosaicSize * TR / 2.0);
        vec2 area5 = vec2(vn.x - mosaicSize / 2.0, vn.y + mosaicSize * TR / 2.0);
        vec2 area6 = vec2(vn.x - mosaicSize / 2.0, vn.y - mosaicSize * TR / 2.0);
      
        if (a >= PI6 && a < PI6 * 3.0) {
            vn = area1;
        } else if (a >= PI6 * 3.0 && a < PI6 * 5.0) {
            vn = area2;
        } else if ((a >= PI6 * 5.0 && a <= PI6 * 6.0)|| (a<-PI6 * 5.0 && a>-PI6*6.0)) {
            vn = area3;
        } else if (a < -PI6 * 3.0 && a >= -PI6 * 5.0) {
            vn = area4;
        } else if(a <= -PI6 && a> -PI6 * 3.0) {
            vn = area5;
        } else if (a > -PI6 && a < PI6)
        {
            vn = area6;
        }
        
        vec4 color = texture2D(Texture, vn);
        gl_FragColor = color;
    }
    
    
    效果
    效果.png

    相关文章

      网友评论

        本文标题:使用openGLES给图片添加马赛克效果

        本文链接:https://www.haomeiwen.com/subject/sntvdktx.html