主机环境选用Ubuntu,分别是192.168.1.141,192.168.1.142,192.168.1.143,一主二仆的模式。
机器选用100多块的arm linux,竟然能跑起来。
一、环境准备
1、统一hosts名称
Master:192.168.1.141
Slave:192.168.1.142 192.168.1.143
更改各个主机上的/etc/hosts
#主机信息
192.168.1.141 hadoop01
#添加节点的信息
192.168.1.142 hadoop02
192.168.1.143 hadoop03
2、配置Master主机到slave主机ssh免密码登录
slave机器上创建 ~/.ssh
root@OrangePi:/# ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/root/.ssh/id_rsa):
Created directory '/root/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /root/.ssh/id_rsa.
Your public key has been saved in /root/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:eTjQhVzHIjWIAmP603tQYIf1/D+tSPDlrRD0D8bBEWY root@OrangePi
The key's randomart image is:
+---[RSA 2048]----+
| +.oooo ==.E. |
| o ooo.+=..*.. |
|. .o +...o |
| . . . . = o . |
| o o S + * |
| . o = * = |
| . . + + + |
| . . o + |
| . o |
+----[SHA256]-----+
root@OrangePi:/#
root@OrangePi:/# cd root
root@OrangePi:~# cd .ssh
root@OrangePi:~/.ssh# cat id_rsa.pub >>authorized_keys
ssh到hadoop03和02
root@OrangePi:~/.ssh# scp authorized_keys root@hadoop02:/root/.ssh/authorized_keys
root@hadoop02's password:
authorized_keys 100% 790 0.8KB/s 00:00
测试一下免密码登录
root@OrangePi:~/.ssh# ssh hadoop02
Welcome to Ubuntu 16.04.1 LTS (GNU/Linux 3.10.65 aarch64)
记得slave机器上执行
sudo chmod 600 ~/.ssh/authorized_keys
主机全部互信
scp ~/.ssh/authorized_keys hadoop01:/root/.ssh/authorized_keys
scp ~/.ssh/authorized_keys hadoop02:/root/.ssh/authorized_keys
scp ~/.ssh/authorized_keys hadoop03:/root/.ssh/authorized_keys
3、各主机安装开启ntp
# sudo apt-get install ntp
# service ntp start
4、安装jdk
sudo add-apt-repository ppa:webupd8team/java
sudo apt-get update
sudo apt-get install oracle-java8-installer
root@OrangePi:/# java -version
java version "1.8.0_171"
Java(TM) SE Runtime Environment (build 1.8.0_171-b11)
Java HotSpot(TM) 64-Bit Server VM (build 25.171-b11, mixed mode)
精简方式的jdk home路径为 /usr/lib/jvm/java-8-oracle
写入etc/profile
export JAVA_HOME=/usr/lib/jvm/java-8-oracle
export JRE_HOME=$JAVA_HOME/jre
export CLASSPATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib
export PATH=${JAVA_HOMR}/bin:$PATH
二、Hadoop集群安装
http://hadoop.apache.org/
1、创建目录
root@OrangePi:~# mkdir /home/data
root@OrangePi:~# mkdir /home/data/hdfs
root@OrangePi:~# cd /home/data/hdfs
root@OrangePi:/home/data/hdfs# mkdir name
root@OrangePi:/home/data/hdfs# mkdir data
root@OrangePi:/home/data/hdfs# mkdir tmp
root@OrangePi:/home/data/hdfs# sudo chmod -R 777 /home/data
在slave机器上执行
mkdir /home/data
mkdir /home/data/hdfs
cd /home/data/hdfs
mkdir name
mkdir data
mkdir tmp
配置etc/profile
export JAVA_HOME=/usr/lib/jvm/java-8-oracle
export JRE_HOME=$JAVA_HOME/jre
export CLASSPATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib
export PATH=${JAVA_HOMR}/bin:$PATH
export HADOOP_HOME=/home/hadoop-3.1.0
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_YARN_HOME=$HADOOP_HOME
export HADOOP_INSTALL=$HADOOP_HOME
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export HADOOP_CONF_DIR=$HADOOP_HOME
export HADOOP_PREFIX=$HADOOP_HOME
export HADOOP_LIBEXEC_DIR=$HADOOP_HOME/libexec
export JAVA_LIBRARY_PATH=$HADOOP_HOME/lib/native:$JAVA_LIBRARY_PATH
export HADOOP_CONF_DIR=$HADOOP_PREFIX/etc/hadoop
export HDFS_DATANODE_USER=root
export HDFS_DATANODE_SECURE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export HDFS_NAMENODE_USER=root
刷新启用命令
source /etc/profile
2、安装配置Hadoop
http://hadoop.apache.org/releases.html
cd /home/
mkdir hadoop
wget http://mirror.bit.edu.cn/apache/hadoop/common/hadoop-3.1.0/hadoop-3.1.0.tar.gz
tar zxvf hadoop-3.1.0.tar.gz -C /home/
3、配置core-site.xml
/home/hadoop-3.1.0/etc/hadoop\core-site.xml
<configuration>
<property>
<name>fs.default.name</name>
<value>hdfs://hadoop01:9000</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/home/data/hdfs/tmp</value>
</property>
</configuration>
4、配置hdfs-site.xml
基本配置包括副本数量,数据存放目录等。
<configuration>
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>/home/data/hdfs/name</value>
</property>
<property>
<name>dfs.namenode.data.dir</name>
<value>/home/data/hdfs/data</value>
</property>
</configuration>
5、配置yarn-site.xml
<configuration>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>hadoop01</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
6、配置mapred-site.xml
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>mapreduce.application.classpath</name>
<value>
/home/hadoop-3.1.0/etc/hadoop,
/home/hadoop-3.1.0/share/hadoop/common/*,
/home/hadoop-3.1.0/share/hadoop/common/lib/*,
/home/hadoop-3.1.0/share/hadoop/hdfs/*,
/home/hadoop-3.1.0/share/hadoop/hdfs/lib/*,
/home/hadoop-3.1.0/share/hadoop/mapreduce/*,
/home/hadoop-3.1.0/share/hadoop/mapreduce/lib/*,
/home/hadoop-3.1.0/share/hadoop/yarn/*,
/home/hadoop-3.1.0/share/hadoop/yarn/lib/*
</value>
</property>
</configuration>
7、配置slave
etc/hadoop/workers
hadoop01
hadoop02
hadoop03
8、配置java_home(根据具体的java home配置)
etc/hadoop/hadoop-env.sh
# The java implementation to use. By default, this environment
# variable is REQUIRED on ALL platforms except OS X!
#export JAVA_HOME= /usr/lib/jvm/java-8-oracle
9、复制配置到slave
cd /home
scp -r hadoop-3.1.0 hadoop02:/home/
scp -r hadoop-3.1.0 hadoop03:/home/
10、配置path
/etc/profile
export HADOOP_HOME=/home/hadoop-3.1.0
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
source /etc/profile
三、Hadoop集群启动运行(master机器上执行)
1、启动namenode
格式化HDFS文件系统
#hadoop namenode -format
root@Hadoop01:~# ps -ef | grep hadoop
root 3047 2756 0 10:06 pts/0 00:00:00 grep --color=auto hadoop
现在启动namenode守护进程
# hadoop-daemon.sh start namenode
2、启动datanode
hdfs --daemon start namenode
hdfs --daemon start datanode
yarn --daemon start resourcemanager
yarn --daemon start nodemanager
root@Hadoop01:/home# jps
5104 ResourceManager
5351 NodeManager
5000 DataNode
5375 Jps
3、一步启动方式成功
start-all.sh
stop-all.sh
http://192.168.1.141:8088/cluster/nodes
相关端口
http://192.168.1.141:9870/dfshealth.html#tab-overview
4、验证sample
home下建test.txt
内容
hello word china chinese korea
groupby
建立目录
hadoop fs -mkdir /input
#hadoop fs -put test.txt /input
列出目录
hadoop fs -ls /
Found 1 items
drwxr-xr-x - root supergroup 0 2018-05-11 06:47 /input
删除文件夹
hadoop fs -rm -r /output
#hadoop jar /home/hadoop-3.1.0/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.0.jar wordcount /input /output
Map-Reduce Framework
Map input records=2
Map output records=6
Map output bytes=63
Map output materialized bytes=81
Input split bytes=100
Combine input records=6
Combine output records=6
Reduce input groups=6
Reduce shuffle bytes=81
Reduce input records=6
Reduce output records=6
Spilled Records=12
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=1088
CPU time spent (ms)=4840
Physical memory (bytes) snapshot=326569984
Virtual memory (bytes) snapshot=3757453312
Total committed heap usage (bytes)=144109568
Peak Map Physical memory (bytes)=210546688
Peak Map Virtual memory (bytes)=2002776064
Peak Reduce Physical memory (bytes)=116023296
Peak Reduce Virtual memory (bytes)=1754677248
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=38
File Output Format Counters
Bytes Written=51
查看结果
root@Hadoop01:/home# hadoop fs -ls /output
WARNING: HADOOP_PREFIX has been replaced by HADOOP_HOME. Using value of HADOOP_PREFIX.
2018-05-11 13:31:47,807 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
-rw-r--r-- 2 root supergroup 0 2018-05-11 13:30 /output/_SUCCESS
-rw-r--r-- 2 root supergroup 51 2018-05-11 13:30 /output/part-r-00000
统计单词结果
root@Hadoop01:/home# hadoop fs -cat /output/part-r-00000
WARNING: HADOOP_PREFIX has been replaced by HADOOP_HOME. Using value of HADOOP_PREFIX.
2018-05-11 13:32:48,377 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
china 1
chinese 1
groupby 1
hello 1
korea 1
word 1
每个文件默认blocksize=128mb
5、解决超出节点内存的问题
mapred-site.xml
<property>
<name>mapreduce.map.memory.mb</name>
<value>512</value>
</property>
<property>
<name>mapreduce.map.java.opts</name>
<value>-Xmx512M</value>
</property>
<property>
<name>mapreduce.reduce.memory.mb</name>
<value>512</value>
</property>
<property>
<name>mapreduce.reduce.java.opts</name>
<value>-Xmx256M</value>
</property>
6、解决hadoop时间跟系统不一致
# cat hadoop-env.sh
.........
export HADOOP_OPTS="$HADOOP_OPTS -Duser.timezone=GMT+08"
.........
# cat yarn-env.sh
.........
YARN_OPTS="$YARN_OPTS -Duser.timezone=GMT+08"
.........
涉及到hbase的也设置时区
# cat hbase-env.sh
.........
export TZ="Asia/Shanghai"
.........
三、安装zookeeper集群
1、下载安装zookeeper 3.4.10版本
wget http://mirror.bit.edu.cn/apache/zookeeper/zookeeper-3.4.10/zookeeper-3.4.10.tar.gz
tar zxvf zookeeper-3.4.10.tar.gz
2、配置文件
mkdir /home/zookeeper-3.4.10/data
mkdir -p /home/zookeeper-3.4.10/datalog
cd /home/zookeeper-3.4.10/conf
复制配置文件
cp zoo_sample.cfg zoo.cfg
配置文件内容
# The number of milliseconds of each tick
tickTime=2000
# The number of ticks that the initial
# synchronization phase can take
initLimit=10
# The number of ticks that can pass between
# sending a request and getting an acknowledgement
syncLimit=5
# the directory where the snapshot is stored.
# do not use /tmp for storage, /tmp here is just
# example sakes.
dataDir=/home/zookeeper-3.4.10/data
dataLogDir=/home/zookeeper-3.4.10/datalog
# the port at which the clients will connect
clientPort=2181
# the maximum number of client connections.
# increase this if you need to handle more clients
#maxClientCnxns=60
#
# Be sure to read the maintenance section of the
# administrator guide before turning on autopurge.
#
# http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_maintenance
#
# The number of snapshots to retain in dataDir
#autopurge.snapRetainCount=3
# Purge task interval in hours
# Set to "0" to disable auto purge feature
#autopurge.purgeInterval=1
server.0=hadoop01:2888:3888
server.1=hadoop02:2888:3888
server.2=hadoop03:2888:3888
3、制作myid文件
在zookeeper的data目录下创建myid文件,master机内容0,其他未1和2;
4、复制zookeeper到从机(复制完成记得修改myid)
scp -r zookeeper-3.4.10 hadoop02:/home/
scp -r zookeeper-3.4.10 hadoop03:/home/
5、配置各台主机的Profile文件
etc/profile添加
export ZOOKEEPER_HOME=/home/zookeeper-3.4.10/data
export PATH=$PATH:$ZOOKEEPER_HOME/bin:$ZOOKEEPER_HOME/conf
记得 source /etc/profile生效
四、启动zookeeper集群
1、各个主机启动zookeeper
root@Hadoop01:/home# zkServer.sh start
ZooKeeper JMX enabled by default
Using config: /home/zookeeper-3.4.10/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
root@Hadoop01:/home# jps
7105 DataNode
6982 NameNode
7272 SecondaryNameNode
7580 ResourceManager
8860 QuorumPeerMain
8878 Jps
7695 NodeManager
root@Hadoop01:/home#
1和3默认成 follower2号机默认为leader
root@Hadoop03:~# zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /home/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: follower
root@Hadoop03:~#
停止命令
zkServer.sh stop
五、配置hadoop相关zookeeper
1、在各主机上建立journal目录
mkdir /home/data/journal
2、修改core-site.xml
<!-- 指定hdfs的nameservice为ns -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://ns</value>
</property>
<!--指定hadoop数据临时存放目录-->
<property>
<name>hadoop.tmp.dir</name>
<value>/home/data/hdfs/tmp</value>
</property>
<property>
<name>io.file.buffer.size</name>
<value>4096</value>
</property>
<!--指定zookeeper地址-->
<property>
<name>ha.zookeeper.quorum</name>
<value>hadoop01:2181,hadoop02:2181,hadoop03:2181</value>
</property>
2、修改hdfs-site.xml
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
-->
<!-- Put site-specific property overrides in this file. -->
<configuration>
<!--指定hdfs的nameservice为ns,需要和core-site.xml中的保持一致 -->
<property>
<name>dfs.nameservices</name>
<value>ns</value>
</property>
<!-- ns下面有两个NameNode,分别是nn1,nn2 -->
<property>
<name>dfs.ha.namenodes.ns</name>
<value>nn1,nn2</value>
</property>
<!-- nn1的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.ns.nn1</name>
<value>hadoop01:9820</value>
</property>
<!-- nn1的http通信地址 -->
<property>
<name>dfs.namenode.http-address.ns.nn1</name>
<value>hadoop01:9870</value>
</property>
<!-- nn2的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.ns.nn2</name>
<value>hadoop02:9820</value>
</property>
<!-- nn2的http通信地址 -->
<property>
<name>dfs.namenode.http-address.ns.nn2</name>
<value>hadoop02:9870</value>
</property>
<!-- 指定NameNode的元数据在JournalNode上的存放位置 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://hadoop01;hadoop02;hadoop03/ns</value>
</property>
<!-- 指定JournalNode在本地磁盘存放数据的位置 -->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/home/data/journal</value>
</property>
<!-- 开启NameNode故障时自动切换 -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<!-- 配置失败自动切换实现方式 -->
<property>
<name>dfs.client.failover.proxy.provider.ns</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!-- 配置隔离机制,如果ssh是默认22端口,value直接写sshfence即可(hadoop:22022) -->
<property>
<name>dfs.ha.fencing.methods</name>
<!-- <value>sshfence</value> -->
<value>
sshfence
shell(/bin/true)
</value>
</property>
<!-- 使用隔离机制时需要ssh免登陆 -->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/root/.ssh/id_rsa</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:/home/data/hdfs/name</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>file:/home/data/hdfs/data</value>
</property>
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
<!-- 在NN和DN上开启WebHDFS (REST API)功能,不是必须 -->
<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>
</property>
</configuration>
同步文件
scp -r /home/hadoop-3.1.0/etc/hadoop hadoop02:/home/hadoop-3.1.0/etc
scp -r /home/hadoop-3.1.0/etc/hadoop hadoop03:/home/hadoop-3.1.0/etc
3、首次启动
1、首先启动各个节点的Zookeeper,在各个节点上执行以下命令:
zkServer.sh start
2、在某一个namenode节点执行如下命令,创建命名空间
hdfs zkfc -formatZK
3、在每个journalnode节点用如下命令启动journalnode
hdfs --daemon start journalnode
4、在主namenode节点格式化namenode和journalnode目录
hdfs namenode -format ns
5、在主namenode节点启动namenode进程
hdfs --daemon start namenode
6、在备namenode节点执行第一行命令,这个是把备namenode节点的目录格式化并把元数据从主namenode节点copy过来,并且这个命令不会把journalnode目录再格式化了!然后用第二个命令启动备namenode进程!
hdfs namenode -bootstrapStandby
hdfs --daemon start namenode
7、在两个namenode节点都执行以下命令
hdfs --daemon start zkfc
8、在所有datanode节点都执行以下命令启动datanode
hadoop-daemon.sh start datanode
http://192.168.1.142:9870/dfshealth.html#tab-overview
http://192.168.1.141:9870/dfshealth.html#tab-overview
后续日常
start-all.sh
stop-all.sh
即可
3、故障测试
在02上
root@Hadoop02:~# jps
3410 QuorumPeerMain
5636 DFSZKFailoverController
5765 NodeManager
5367 DataNode
5287 NameNode
5498 JournalNode
5979 Jps
kill namenode
root@Hadoop02:~# kill -9 5287
回去看standby的是否变成active自动切换成功图片
至此,安装全部完成,从安装系统到完全跑通,历时2.5天时间。
网友评论
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
这个数量值决定的。
不建议用hadoop3.1,这个不支持hbase2.0目前。hbase搭配hadoop2.8.3是官网推荐的。