美文网首页GolangGoWorldGo
golang并发三板斧系列之一:channel用于通信和同步

golang并发三板斧系列之一:channel用于通信和同步

作者: 白想519 | 来源:发表于2019-05-09 19:54 被阅读13次

    某不知名程序员曾说过:

    我们爱golang,很大程度是因为爱它的并发。

    我们来总结下golang的并发三板斧,channel、pool、context。一路看下来,套路也就那么几个。

    Concurrency is not parallelism

    首先必须牢记一个重要的概念:并发不是并行

    并发是描述代码架构,是指在模型上可以同时处理多件事务。并行是描述执行状态,除了代码限制外,如果没有多CPU多核心,谈何并行呢?对于单CPU单核心的硬件(当然现在基本上很少了),并发往往带来更多的进程间切换,反而会拖累效率。

    那到底要不要并行?或者说什么情况下并行的收益最大?关键在于我们的模型是CPU密集型还是IO密集型的,一般来讲前者更适用于并行。听起来好像有点反常识,这么来思考一下:

    • CPU密集型不会主动释放系统线程,人为释放的话会有时间成本。利用并行的话,可以尽量让CPU密集型的任务独占一个系统线程。
    • IO密集型本身遇到系统调用或者网络阻塞就会释放系统线程,所以单纯的并发模型就能满足需要了,可以有效利用单一的系统线程。

    本系列文章只谈golang的代码模型,因此取并发二字。下图很直观的区分了并发和并行:

    image

    goroutine

    这大概是golang中最吸引人的地方了。

    [图片上传失败...(image-b09ed-1557402795588)]

    启动goroutine

    关键字go启动一个goroutine,新手容易犯以下的错误,使得goroutine没有真正运行:

    func testBoring(msg string) {
        for i := 0; ; i++ {
            log.Printf("%s %d", msg, i)
            time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)
        }
    }
    
    func TestBasicGo(t *testing.T) {
        go testBoring("boring!")
    }
    

    主进程在启动的goroutine并没有运行到就退出了,因此没有效果,不会有打印。

    等待goroutine执行

    func testBoring(msg string) {
        for i := 0; ; i++ {
            log.Printf("%s %d", msg, i)
            time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)
        }
    }
    
    func TestGoAndWait(t *testing.T) {
        go testBoring("boring!")
    
        log.Printf("I'm listening.")
        time.Sleep(time.Second)
        log.Printf("I'm leaving.")
    }
    

    如此,手动用time.Sleep阻塞主进程,使得启动的goroutine能开始执行:

    2019/02/17 17:55:33 I'm listening.
    2019/02/17 17:55:33 boring! 0
    2019/02/17 17:55:34 boring! 1
    2019/02/17 17:55:34 boring! 2
    2019/02/17 17:55:34 I'm leaving.
    
    Process finished with exit code 0
    

    goroutine执行时机

    那么go出去的goroutine到底什么时候能执行到呢?golang的调度器是非抢占式的,在GPM的架构里,Waiting态的goroutine(在LRQ或者GRQ中等待执行)必须要等Executing态的goroutine主动退出执行,才能绑定到M上执行。主动退出的方式有很多,比如time.Sleep(),比如runtime.Gosched()GPM架构可以参考很多资料比如这篇

    因此单核心或者多核心在调度goroutine的时候可能会有很大差异,如下示例:

    func TestGoFuncParam(t *testing.T) {
        for i := 0; i < 10; i++ {
            go func() {
                log.Println(i)
            }()
        }
        time.Sleep(100 * time.Millisecond)
        log.Print("xxxxxxxxxxxxxx")
    
        for i := 0; i < 10; i++ {
            go func(n *int) {
                log.Println(*n)
            }(&i)
        }
        time.Sleep(100 * time.Millisecond)
    }
    

    代码在单核心运行时(注意-cpu 1),结果是确定的,所有启动的goroutine都是等主进程sleep的时候才能切换执行:

    C02S259EFVH3:go_concurrency baixiao$ go test -cpu 1 -run TestGoFuncParam
    2019/02/17 18:20:10 10
    2019/02/17 18:20:10 10
    2019/02/17 18:20:10 10
    2019/02/17 18:20:10 10
    2019/02/17 18:20:10 10
    2019/02/17 18:20:10 10
    2019/02/17 18:20:10 10
    2019/02/17 18:20:10 10
    2019/02/17 18:20:10 10
    2019/02/17 18:20:10 10
    2019/02/17 18:20:10 xxxxxxxxxxxxxx
    2019/02/17 18:20:10 10
    2019/02/17 18:20:10 10
    2019/02/17 18:20:10 10
    2019/02/17 18:20:10 10
    2019/02/17 18:20:10 10
    2019/02/17 18:20:10 10
    2019/02/17 18:20:10 10
    2019/02/17 18:20:10 10
    2019/02/17 18:20:10 10
    2019/02/17 18:20:10 10
    PASS
    ok      _/Users/baixiao/Go/src/github.com/baixiaoustc/go_concurrency    0.214s
    

    在多核心时则不同,for循环里的第一个goroutine可能在主进程走完for代码之前就执行到(每次运行可能结果不同):

    C02S259EFVH3:go_concurrency baixiao$ go test -cpu 8 -run TestGoFuncParam
    2019/02/17 18:20:24 7
    2019/02/17 18:20:24 10
    2019/02/17 18:20:24 10
    2019/02/17 18:20:24 10
    2019/02/17 18:20:24 10
    2019/02/17 18:20:24 10
    2019/02/17 18:20:24 10
    2019/02/17 18:20:24 10
    2019/02/17 18:20:24 10
    2019/02/17 18:20:24 10
    2019/02/17 18:20:25 xxxxxxxxxxxxxx
    2019/02/17 18:20:25 1
    2019/02/17 18:20:25 10
    2019/02/17 18:20:25 10
    2019/02/17 18:20:25 10
    2019/02/17 18:20:25 10
    2019/02/17 18:20:25 10
    2019/02/17 18:20:25 10
    2019/02/17 18:20:25 10
    2019/02/17 18:20:25 10
    2019/02/17 18:20:25 10
    PASS
    ok      _/Users/baixiao/Go/src/github.com/baixiaoustc/go_concurrency    0.219s
    

    channel:goroutine间的通信

    搞并发编程,怎么能没有进程间(线程间/协程间)通信呢?

    goroutine需要通信

    在上例TestGoAndWait中,我们假装主goroutine听到了子goroutine的话(注意这里的子goroutine仅用于方便描述,并不像多进程里面有父子关系,下同)。实则不然。要这两个goroutine通信,我们需要channel。来一个最简单的示例,当然这是一个死循环:

    func testBoringWithChannel(msg string, c chan string) {
        for i := 0; ; i++ {
            c <- fmt.Sprintf("%s %d", msg, i)
            time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)
        }
    }
    
    func TestGoWithChannel(t *testing.T) {
        ch := make(chan string)
        go testBoringWithChannel("boring!", ch)
        for c := range ch {
            log.Printf("You say: %s", c)
        }
    }
    

    关闭channel

    抛开死循环,怎么在子goroutine结束时告知主goroutine呢?直接退出是会造成死锁的!

    fatal error: all goroutines are asleep - deadlock!

    此时需要在写端关闭channel:

    func testBoringWithChannelClose(msg string, c chan string) {
        for i := 0; i < 5; i++ {
            c <- fmt.Sprintf("%s %d", msg, i)
            time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)
        }
        close(c)
    }
    
    func TestGoWithChannelClose(t *testing.T) {
        ch := make(chan string)
        go testBoringWithChannelClose("boring!", ch)
        for c := range ch {
            log.Printf("You say: %s", c)
        }
    }
    
    2019/02/19 21:35:23 You say: boring! 0
    2019/02/19 21:35:23 You say: boring! 1
    2019/02/19 21:35:24 You say: boring! 2
    2019/02/19 21:35:24 You say: boring! 3
    2019/02/19 21:35:24 You say: boring! 4
    
    Process finished with exit code 0
    

    for range可以自动监测到channel关闭,然后自动退出。但是需要强调的是关闭后的channel不能再写入,如下是个反例:

    func TestGoWithChannelCloseThenWrite(t *testing.T) {
        ch := make(chan string)
        go testBoringWithChannelClose("boring!", ch)
        for c := range ch {
            log.Printf("You say: %s", c)
        }
        ch <- "after close"
    }
    
    2019/02/18 23:12:31 receive boring! 0
    2019/02/18 23:12:31 receive boring! 1
    2019/02/18 23:12:32 receive boring! 2
    2019/02/18 23:12:32 receive boring! 3
    2019/02/18 23:12:32 receive boring! 4
    panic: send on closed channel [recovered]
        panic: send on closed channel
    
    goroutine 5 [running]:
    testing.tRunner.func1(0xc4200aa0f0)
        /usr/local/go/src/testing/testing.go:711 +0x2d2
    panic(0x1114e40, 0x1151930)
        /usr/local/go/src/runtime/panic.go:491 +0x283
    github.com/baixiaoustc/go_concurrency.TestGoWithChannelCloseThenWrite(0xc4200aa0f0)
        /Users/baixiao/Go/src/github.com/baixiaoustc/go_concurrency/first_post_test.go:80 +0x167
    testing.tRunner(0xc4200aa0f0, 0x1141a58)
        /usr/local/go/src/testing/testing.go:746 +0xd0
    created by testing.(*T).Run
        /usr/local/go/src/testing/testing.go:789 +0x2de
    
    Process finished with exit code 2
    

    还需要记住一点,关闭后的channel不能再写入,但是可以继续读,读出来都是定义类型的空值。

    只读channel

    如何简单地避免上述误操作呢?可以用只读channel,生产者和消费者严格定义好,生产者只写channel,消费者只读channel,如果消费者有写入操作的话在编译时就会报错。但是只读channel的写法有一点技巧,如下的写法就不行,直接编译失败:

    func TestReceiveChannelWrong(t *testing.T) {
        ch := make(<-chan int)
        go func() {
            ch <- 1
        }()
        a := <-ch
        log.Println(a)
    }
    
    ./first_post_test.go:86:6: invalid operation: ch <- 1 (send to receive-only type <-chan int)
    
    Process finished with exit code 2
    

    正确的写法如下,通过函数的返回值限定「只读属性」:

    func TestReceiveChannelRight(t *testing.T) {
        ch := func() <-chan int {
            ch := make(chan int)
            go func() {
                ch <- 2
            }()
            return ch
        }()
        a := <-ch
        log.Println(a)
    }
    

    channel with select

    那么当主goroutine要启动多个子goroutine干不同的事呢?主goroutine不可能依次阻塞到不同的channel上,串行地等待子goroutine依次完工,这样太丑了:

    func TestMultiChannelsSerial(t *testing.T) {
        ch1 := make(chan string)
        go testBoringWithChannelClose("boring!", ch1)
        ch2 := make(chan string)
        go testBoringWithChannelClose("funning!", ch2)
    
        for b := range ch1 {
            log.Printf("You say: %s", b)
        }
        for b := range ch2 {
            log.Printf("You say: %s", b)
        }
    }
    

    golang提供了select关键字,提供了多路复用的能力,同时处理多个channel。为了让主goroutine不是一直死循环等,而是在其多个子goroutine完工后继续往下走,这里用到了两个重要特性:

    • 使用_,ok判断channel是否关闭
    • 当通道为nil时,对应的case永远为阻塞
    func TestMultiChannelsConcurrently(t *testing.T) {
        ch1 := make(chan string)
        go testBoringWithChannelClose("boring!", ch1)
        ch2 := make(chan string)
        go testBoringWithChannelClose("funning!", ch2)
    
        for {
            select {
            case c1, ok := <-ch1:
                if !ok {
                    ch1 = nil
                    log.Print("close ch1")
                    continue
                }
                log.Printf("You say: %s", c1)
            case c2, ok := <-ch2:
                if !ok {
                    ch2 = nil
                    log.Print("close ch2")
                    continue
                }
                log.Printf("You say: %s", c2)
            default:
                break
            }
    
            if ch1 == nil && ch2 == nil {
                break
            }
        }
    
        log.Print("go on")
    }
    
    2019/02/19 21:32:18 You say: funning! 0
    2019/02/19 21:32:18 You say: boring! 0
    2019/02/19 21:32:18 You say: funning! 1
    2019/02/19 21:32:19 You say: boring! 1
    2019/02/19 21:32:19 You say: funning! 2
    2019/02/19 21:32:19 You say: boring! 2
    2019/02/19 21:32:19 You say: funning! 3
    2019/02/19 21:32:19 You say: boring! 3
    2019/02/19 21:32:19 You say: funning! 4
    2019/02/19 21:32:20 You say: boring! 4
    2019/02/19 21:32:20 close ch2
    2019/02/19 21:32:20 close ch1
    
    2019/02/19 21:32:20 go on
    

    这里值得一提的是,funning和boring肯定是交替出现的,但是第一个是funning还是boring是随机的,因为select还有一个特征是,当多个case同时满足的时候,随机地选一个执行。

    构造定时器

    channel + select 的另一个经典运用是超时管理:

    func TestTimeOutEach(t *testing.T) {
        ch := make(chan string)
        go testBoringWithChannel("boring!", ch)
        for i := 0; i < 5; i++ {
            select {
            case c := <-ch:
                log.Printf("You say: %s", c)
            case <-time.After(500 * time.Millisecond):
                log.Println("You talk too slow.")
            }
        }
    }
    
    2019/02/19 21:08:14 You say: boring! 0
    2019/02/19 21:08:14 You say: boring! 1
    2019/02/19 21:08:15 You talk too slow.
    2019/02/19 21:08:15 You say: boring! 2
    2019/02/19 21:08:15 You talk too slow.
    
    Process finished with exit code 0
    

    上述是针对每次循环内部的超时,如果要对整个会话进行管理:

    func TestTimeOutWhole(t *testing.T) {
        ch := make(chan string)
        timeout := time.After(1 * time.Second)
        go testBoringWithChannel("boring!", ch)
        for i := 0; i < 5; i++ {
            select {
            case c := <-ch:
                log.Printf("You say: %s", c)
            case <-timeout:
                log.Println("You talk too much.")
                return
            }
        }
    }
    

    channel生成器

    还有一个比较常用的方法在上面的只读channel也提到了,雅称channel生成器:

    func TestChannelGenerator(t *testing.T) {
        ch := testBoringWithChannelGenerate("boring!")
        for i := 0; i < 5; i++ {
            log.Printf("You say: %q\n", <-ch)
        }
        log.Println("I'm leaving.")
    }
    
    2019/02/19 21:20:40 You say: "boring! 0"
    2019/02/19 21:20:40 You say: "boring! 1"
    2019/02/19 21:20:41 You say: "boring! 2"
    2019/02/19 21:20:41 You say: "boring! 3"
    2019/02/19 21:20:42 You say: "boring! 4"
    
    2019/02/19 21:20:42 I'm leaving.
    

    channel用于退出

    扩展上个示例,如果想在主goroutine退出之前告知子goroutine也退出呢?还是利用channel,只不过发送者和接受者对调了:

    func testBoringWithChannelQuit(msg string, quit chan bool) <-chan string {
        c := make(chan string)
        go func() {
            for i := 0; ; i++ {
                select {
                case c <- fmt.Sprintf("%s %d", msg, i):
                    time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)
                case <-quit:
                    return
                }
    
            }
        }()
        return c
    }
    
    func TestChannelQuit(t *testing.T) {
        quit := make(chan bool)
        c := testBoringWithChannelQuit("boring!", quit)
        for i := 0; i < 5; i++ {
            log.Printf("You say: %q\n", <-c)
        }
        log.Println("I'm leaving.")
        quit <- true
    }
    

    通信和同步

    上面提到的channel都是没有buffer的,很大程度上起了「同步」的作用。发送者和接受者都必须等双方都准备好才能通信,实际上是一个同步模型。

    后面会再提带buffer的channel。


    本篇的模型可以类比为你现在是个师傅,带了个小学徒一起做事情。一开始双方没有通信,各搞各的,指挥学徒很麻烦。后面用上了channel,师傅能从学徒那里收到回馈了,也能定时触发一些事情了,也能由师傅指定学徒该下班了。小作坊就越开越顺了。


    所有代码都在https://github.com/baixiaoustc/go_concurrency/blob/master/first_post_test.go中能找到。

    相关文章

      网友评论

        本文标题:golang并发三板斧系列之一:channel用于通信和同步

        本文链接:https://www.haomeiwen.com/subject/sobgoqtx.html