import curses #控制字符界面
from random import randrange, choice
#random.randrange([start], stop[, step]),
# 从指定范围内,按指定基数递增的集合中 获取一个随机数。
#random.choice从序列中获取一个随机元素。
from collections import defaultdict#默认字典
letter_codes = [ord(ch) for ch in 'WASDRQwasdrq']#ord函数以一个字符为参数,返回对应的ASCII数值,或者Unicode数值
actions = ['Up', 'Left', 'Down', 'Right', 'Restart', 'Exit']
actions_dict = dict(zip(letter_codes,actions*2)) #zip() 函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的对象,这样做的好处是节约了不少的内存。
#[(W,Up),(A,Left),..(q,Exit)]-->{W:Up, A:Left,...q:Exit}
#用户输入
def get_user_action(keyboard):
char = 'N'
while char not in actions_dict:
char = keyboard.getch()
return actions_dict[char]
#矩阵转置
def transpose(field):#进行一个二维列表的转换
return [list(row) for row in zip(*field)]
#矩阵逆转
def invert(field):
return [row[::-1] for row in field]
#创建棋盘
class GameField(object):#class:类的关键字;GameField:自定义类的标识符;object;要继承的类名(是一个更大的类,可以从这个父类中继承一些功能和特性),object是默认值。
def __init__(self, height=4, width=4, win=2048):#__init__是超类object下的一个初始化对象数据的函数
self.height = height #高
self.width = width #宽
self.win_value = win #过关分数
self.score = 0 #当前分数
self.highscore = 0 #最高分数
self.reset() #棋盘重置
#重置棋盘
def reset(self):
if self.score > self.highscore:
self.highscore = self.score
self.score = 0
self.field = [[0 for i in range(self.width)] for j in range(self.height)]#嵌套的列表,四行四列
self.spawn()
self.spawn()#在嵌套的列表里随机的生成元素
def move(self,direction):#合并
#一行向左合并
def move_row_left(row):
def tighten(row): #把零散的非零单元挤到一起
new_row = [i for i in row if i !=0]
new_row += [0 for i in range(len(row)-len(new_row))]
return new_row
def merge(row): #对邻近元素进行合并
pair = False
new_row = []
for i in range(len(row)):
if pair:
new_row.append(2 * row[i])#合并
self.score += 2 * row[i]#记录分数
pair = False
else:
if i +1 < len(row) and row[i] == row[i + 1]:
pair = True
new_row.append(0)
else:
new_row.append(row[i])
assert len(new_row) == len(row)
return new_row
#先挤到一块再合并再挤到一起
return tighten(merge(tighten(row)))
#通过对矩阵进行转置和逆转,可以直接从左移得到其余三个方向的移动操作
moves = {}
moves['Left'] = lambda field: \
[move_row_left(row) for row in field]
moves['Right'] = lambda field: \
invert(moves['Left'](invert(field)))
moves['Up'] = lambda field: \
transpose(moves['Left'](transpose(field)))
moves['Down'] = lambda field: \
transpose(moves['Right'](transpose(field)))
if direction in moves:
if self.move_is_possible(direction):
self.field = moves[direction](self.field)
self.spawn()
return True
else:
return False
#判断输赢
def is_win(self):
return any(any(i >= self.win_value for i in row) for row in self.field)
def is_gameover(self):
return not any(self.move_is_possible(move) for move in actions)
#绘制游戏界面
def draw(self,screen):
help_string1 = '(W)Up (S)Down (A)Left (D)Right'
help_string2 = ' (R)Restart (Q)Exit'
gameover_string = ' GAME OVER'
win_string = ' YOU WIN!'
def cast(string):
screen.addstr(string + '\n')#调用方法把字符串打印到屏幕
#绘制水平分割线
def draw_hor_separator():
line = '+' + ('+------' * self.width + '+')[1:]
separator = defaultdict(lambda: line)
if not hasattr(draw_hor_separator, 'counter'):
draw_hor_separator.counter = 0
cast(separator[draw_hor_separator.counter])
draw_hor_separator.counter += 1
def draw_row(row):
cast(''.join('|{: ^5} '.format(num) if num > 0 else '| ' for num in row)+ '|')
screen.clear()
cast('SCORE: ' + str(self.score))#绘制当前分数和最高分
if 0 != self.highscore:
cast('HIGHSCORE:' + str(self.highscore))
for row in self.field:
draw_hor_separator()#绘制分割线
draw_row(row)#绘制行
draw_hor_separator()#绘制底边的线
if self.is_win():
cast(win_string)
else:
if self.is_gameover():
cast(gameover_string)
else:
cast(help_string1)
cast(help_string2)
#棋盘操作
#随机生成一个2或者4
def spawn(self):
new_element = 4 if randrange(100) > 89 else 2#9:1的比例生成4和2
(i,j) = choice([(i,j) for i in range(self.width) for j in range(self.height) if self.field[i][j] ==0])#通过choice选择一个未被占领的位置
self.field[i][j] = new_element
#判断能否移动
def move_is_possible(self,diretion):
def row_is_left_movable(row):#判断是否可以向左移动
def change(i):
if row[i] == 0 and row[i + 1] !=0:
return True
if row[i] !=0 and row[i + 1] == row[i]:
return True
return False
return any(change(i) for i in range(len(row) - 1))#any,只要有一个是ture结果就是ture
check = {}
check['Left'] = lambda field: \
any(row_is_left_movable(row) for row in field)
check['Right'] = lambda field: \
check['Left'](invert(field))
check['Up'] =lambda field: \
check['Left'](transpose(field))
check['Down'] =lambda field: \
check['Right'](transpose(field))
if diretion in check:
return check[diretion](self.field)
else:
return False
#主逻辑
def main(stdscr):#标准屏幕,curses模块
def init():
#重置游戏棋盘
game_field.reset()
return 'Game'
def not_game(state):
#画出 GameOver 或者 Win 的界面
game_field.draw(stdscr)
#读取用户输入得到的action,判断是重启游戏还是结束游戏
action = get_user_action(stdscr)
responses = defaultdict(lambda : state)#默认是当前状态,没有行为就会一直在当前界面循环
#collections.defaultdict可以接受一个函数作为参数来初始化
responses['Restart'],responses['Exit']='Init','Exit'#对应不同的行为转换到不同的状态
return responses[action]
def game():
#画出当前棋盘的状态
game_field.draw(stdscr)
#读取用户输入得到的action
action = get_user_action(stdscr)
if action == 'Restart':
return 'Init'
if action == 'Exit':
return 'Exit'
if game_field.move(action):
if game_field.is_win():
return 'Win'
if game_field.is_gameover():
return 'Gameover'
return 'Game'
state_actions = {
'Init': init,
'Win': lambda: not_game('Win'),
'Gameover': lambda : not_game('Gameover'),
'Game': game
}
curses.use_default_colors()
game_field = GameField(win=2048)
state = 'Init'
#状态机开始循环
while state != 'Exit':
state = state_actions[state]()
curses.wrapper(main)#把stdscr对象传入main函数里,wrapper接口
网友评论