Python 线程与进程
Python由于有全锁局的存在(同一时间只能有一个线程执行),并不能利用多核优势。所以,如果程序的多线程进程是CPU密集型的,那多线程并不能带来效率上的提升,相反还可能会因为线程的频繁切换,导致效率下降;如果是IO密集型,多线程进程可以利用IO阻塞等待时的空闲时间执行其他线程,提升效率。
但我们总会有在程序中实现多并发来提升程序运行效率的情形。在这些情形下,可以适当的利用多进程来实现提升效率。
另外,python中,为了解决网络请求密集中,延时等待的问题,我们还可是使用协程来提交效率。
在于IO密集型程序中,多线程应用较多。
但在网络请求密集中,协程比多线程强上很多。
在CPU密集中,还是进程应用更多。
以下是三个例子:
线程:
#!/usr/bin/python
# -*- coding: UTF-8 -*-
import threading
import time, datetime
# 为线程定义一个函数
def print_time(thread_name):
for i in range(3):
now = datetime.datetime.now()
print(now, thread_name)
time.sleep(1)
# 不带线程处理的程序
for i in range(5):
threadname = "threadName" + str(i)
print_time(threadname)
#线程处理
# for i in range(5):
# threadname = "threadName"+str(i)
# t = threading.Thread(target=print_time(threadname))
# t.start()
运行发现,不带线程处理的程序和线程处理的程序运行顺序是一样的:
/Library/Frameworks/Python.framework/Versions/3.6/bin/python3.6 /Users/caobo/PycharmProjects/ThreadTest/threadTest.py
2017-11-08 11:55:32.889184 threadName0
2017-11-08 11:55:33.890456 threadName0
2017-11-08 11:55:34.894145 threadName0
2017-11-08 11:55:35.899107 threadName1
2017-11-08 11:55:36.900408 threadName1
2017-11-08 11:55:37.903821 threadName1
2017-11-08 11:55:38.907008 threadName2
2017-11-08 11:55:39.909538 threadName2
2017-11-08 11:55:40.914680 threadName2
2017-11-08 11:55:41.918500 threadName3
2017-11-08 11:55:42.921579 threadName3
2017-11-08 11:55:43.925748 threadName3
2017-11-08 11:55:44.928359 threadName4
2017-11-08 11:55:45.931913 threadName4
2017-11-08 11:55:46.932414 threadName4
Process finished with exit code 0
每个线程执行完需要3秒,依次执行线程,总耗时15秒。
进程
# 进程处理
if __name__ == "__main__":
for i in range(5):
threadName = "threadName" + str(i)
p = multiprocessing.Process(target=print_time, args=(threadName,))
p.start()
进程处理运行结果如下:
/Library/Frameworks/Python.framework/Versions/3.6/bin/python3.6 /Users/caobo/PycharmProjects/ThreadTest/threadTest.py
2017-11-08 11:58:44.045175 threadName0
2017-11-08 11:58:44.046196 threadName1
2017-11-08 11:58:44.047036 threadName2
2017-11-08 11:58:44.048071 threadName3
2017-11-08 11:58:44.049010 threadName4
2017-11-08 11:58:45.045841 threadName0
2017-11-08 11:58:45.046783 threadName1
2017-11-08 11:58:45.048291 threadName2
2017-11-08 11:58:45.048476 threadName3
2017-11-08 11:58:45.050095 threadName4
2017-11-08 11:58:46.046989 threadName0
2017-11-08 11:58:46.047063 threadName1
2017-11-08 11:58:46.048629 threadName2
2017-11-08 11:58:46.049239 threadName3
2017-11-08 11:58:46.050937 threadName4
Process finished with exit code 0
每个进程执行完需要3秒,并发执行线程,总耗时3秒。
进程池
# 进程池处理
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4)
for i in range(5):
threadName = "threadName" + str(i)
pool.apply_async(print_time, (threadName,))
pool.close()
pool.join()
print("Sub-process(es) done.")
进程池处理结果如下:
/Library/Frameworks/Python.framework/Versions/3.6/bin/python3.6 /Users/caobo/PycharmProjects/ThreadTest/threadTest.py
2017-11-08 12:01:03.557402 threadName0
2017-11-08 12:01:03.557552 threadName1
2017-11-08 12:01:03.557686 threadName2
2017-11-08 12:01:03.557827 threadName3
2017-11-08 12:01:04.558322 threadName2
2017-11-08 12:01:04.558306 threadName0
2017-11-08 12:01:04.558311 threadName1
2017-11-08 12:01:04.558322 threadName3
2017-11-08 12:01:05.558841 threadName1
2017-11-08 12:01:05.558833 threadName2
2017-11-08 12:01:05.558841 threadName0
2017-11-08 12:01:05.558845 threadName3
2017-11-08 12:01:06.560105 threadName4
2017-11-08 12:01:07.561340 threadName4
2017-11-08 12:01:08.561577 threadName4
Sub-process(es) done.
Process finished with exit code 0
由于设置了进程并发的数量为4,所以,前三秒执行的都是前四个进程的内容(每个进程执行完需要三秒),进程5只能在前四个进程执行完成之后,才开始执行。总耗时6秒。
修改进程并发数量为5:
# 进程池处理
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=5)
for i in range(5):
threadName = "threadName" + str(i)
pool.apply_async(print_time, (threadName,))
pool.close()
pool.join()
print("Sub-process(es) done.")
运行结果如下:
/Library/Frameworks/Python.framework/Versions/3.6/bin/python3.6 /Users/caobo/PycharmProjects/ThreadTest/threadTest.py
2017-11-08 12:12:17.210982 threadName0
2017-11-08 12:12:17.211084 threadName1
2017-11-08 12:12:17.211188 threadName2
2017-11-08 12:12:17.211335 threadName3
2017-11-08 12:12:17.211451 threadName4
2017-11-08 12:12:18.211480 threadName0
2017-11-08 12:12:18.211481 threadName2
2017-11-08 12:12:18.211480 threadName1
2017-11-08 12:12:18.211785 threadName3
2017-11-08 12:12:18.211787 threadName4
2017-11-08 12:12:19.211773 threadName2
2017-11-08 12:12:19.211784 threadName0
2017-11-08 12:12:19.212676 threadName1
2017-11-08 12:12:19.212679 threadName4
2017-11-08 12:12:19.212679 threadName3
Sub-process(es) done.
Process finished with exit code 0
修改设置进程并发的数量为5,所以,所有5个进程能够同步执行。每个进程执行完需要三秒,总耗时3秒。
网友评论