美文网首页Python新世界python热爱者
鬼才把python当成PS用,抠图合成图片样样精通!

鬼才把python当成PS用,抠图合成图片样样精通!

作者: 48e0a32026ae | 来源:发表于2018-12-10 15:05 被阅读4次

    本文约1500字,阅读需要5分钟

    关键词:Python P图 OpenCV

    本文讲述了借助Python语言和OpenCV工具库完成一个简单的P图操作的过程~

    学习Python中有不明白推荐加入交流群

                    号:960410445

                    群里有志同道合的小伙伴,互帮互助,

                    群里有不错的视频学习教程和PDF!

    作为一名可视化工程师,如果只会使用PS,那么你一定OUT了。在专注各种花式P图多年,在学习PS,AI,PR,AE,XD……无数设计软件之后,本人终于悟到了一门独步江湖的绝技——“代码P图”。

    今天,我就把这门P图界的无上秘籍,传授给你!希望你在炫技(zuo si)的道路上越走越远。

    来看一下今天的素材:守望先锋新上线的英雄——艾什的正面照:

    然后这是一张背景图:

    今天的任务很简单,我要对第一张图中的人物进行抠图,然后贴在背景图上

    这个操作用PS并不复杂,让我们来看一下这一过程如何用代码来实现~

    素材处理

    首先,导入一些工具包

    opencv(cv2),用于图像处理numpy,用于数据计算。matplotlib用于出图。

    import cv2

    import numpy as np

    import matplotlib.pyplot as plt

    建立一个显示图片的函数,便于在P图过程中,实时查看效果

    使用的是matplotlib的功能,和制作图表的过程一致。

    #建立显示图片的函数

    def show(image):

    plt.imshow(image)

    plt.axis('off')

    plt.show()

    然后,导入前景图

    因为opencv的图片默认使用BGR图像格式,而我们通常使用的图片是RGB(红,绿,蓝),所以,需要再转换一下格式,否则查看时颜色会失真。

    最后打印图片规格和图片本身

    #导入前景图

    img=cv2.imread('img.png') #图片导入

    img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB) #转换颜色模型

    print(img.shape) #打印图片规格

    show(img) #显示图片

    来看一下效果,高1054像素,长703像素,3通道。

    同样的方法,导入背景图

    #导入背景图

    back_img = cv2.imread('back_img.jpg') #图片导入

    back_img = cv2.cvtColor(back_img,cv2.COLOR_BGR2RGB) #转换颜色模型

    print(back_img.shape) #打印图片规格

    show(back_img) #显示图片

    效果如下,高1079,长1920,3通道。

    我们发现人物图高度和背景高度差不多,且我们只要中间的人像即可,那么我们先来适当地裁剪一下图片

    #裁剪图片

    img = img[0:1000,150:550] #裁剪图片大小

    show(img) #显示图片

    通过切片,裁去了logo

    再对图片缩小10%,这样大小最为合适

    #缩放图片

    print(img.shape) #打印图片规格

    img=cv2.resize(img,None,fx=0.9,fy=0.9) #图片缩小10%

    print(img.shape) #打印图片规格

    打印一下图片尺寸,发现裁剪成功

    图片在计算机中是用数字矩阵形式保存的,红、绿、蓝三个颜色通道每种色各分为256阶,分别由0-255这256个数表示。比如900*360的图片,可以理解为900行360列的像素矩阵,而每个像素又是由R,G,B三个数字确认其颜色的。于是,我们先把图片的行,列数记录下来,稍后可以用诸如遍历的方法读取每个像素,再对其进行矩阵计算。

    #拆分图片信息

    rows,cols,channels = img.shape #拆分图片信息

    抠图:三种效果

    抠图的方法雷同PS,我们要先建立个蒙版。在开始之前,我们先需要把图片转换成HSV格式,这是一种比较直观的颜色模型,可以更好的数字化处理颜色。

    #转换格式

    img_hsv = cv2.cvtColor(img,cv2.COLOR_RGB2HSV) #把图片转换成HSV格式,用于抠图

    show(img_hsv) #显示图片

    看下效果:

    虽然不能直视,但做法显而易见,只要把非蓝色的部分提取出来。我们设定一个阈值,在最小阈值以下和最大阈值以上,图像变为0,而在阈值之间的变为255。

    #抠图

    lower_blue=np.array([0,0,0]) #获取最小阈值

    upper_blue=np.array([0,255,255]) #获取最大阈值

    mask = cv2.inRange(img_hsv, lower_blue, upper_blue) #创建遮罩

    show(mask) #显示遮罩

    然后,遮罩就这么给整了出来。

    不过,我们发现,人物中间有那么多小点点,我需要把它们去掉。这里使用形态学图像处理的基本方法,先腐蚀后膨胀。其原理是在原图的小区域内取局部最小值和最大值,背后的逻辑为深度学习中的卷积神经网络。

    通过尝试,我发现还可以使用开运算(先腐蚀后膨胀的整合运算)直接完成这一过程,且效果相对较好。

    erode=cv2.erode(mask,None,iterations=3) #图像腐蚀

    show(erode) #显示图片

    dilate=cv2.dilate(erode,None,iterations=1) #图像膨胀

    show(dilate) #显示图片

    opening = cv2.morphologyEx(mask, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (8,8))) #开运算

    show(opening) #显示图片

    大家可以自行比较下腐蚀腐蚀后膨胀开运算的效果:

    图像合并

    最后,终于到了图像合并环节。先设定人物在背景图中的起始位置。再遍历遮罩中的每个像素,如果是0(代表黑色),则把人物图像上的颜色赋值到背景图像上。

    center = [70,240] #设置前景图开始位置

    for i in range(rows):

    for j in range(cols):

    if opening[i,j]==0: #代表黑色

    back_img[center[0]+i,center[1]+j] =img[i,j] #赋值颜色

    show(back_img) #显示图片

    运行完毕,显示结果:

    受限于图片质量和简化代码,略显粗糙,但大体已经达到功能~

    最后,调整图片格式,并保存。

    back_img = cv2.cvtColor(back_img,cv2.COLOR_RGB2BGR) #图像格式转换

    back_img=cv2.resize(back_img,None,fx=0.8,fy=0.8) #图像缩放20%

    cv2.imwrite('result.png',back_img) #保存图像

    相关文章

      网友评论

        本文标题:鬼才把python当成PS用,抠图合成图片样样精通!

        本文链接:https://www.haomeiwen.com/subject/ssxkhqtx.html