美文网首页
2022-04-11-初步学习Seurat

2022-04-11-初步学习Seurat

作者: Shift_shift | 来源:发表于2022-04-11 15:38 被阅读0次

#一、预处理,简单的数据过滤

library(Seurat)

library(tidyverse)

epi <- read.table("E:/ty_data/GSE136447_555sample_gene_count_matrix.txt", sep = "\t",header = TRUE, row.names = 1)

dim(epi)

epi.seu <- CreateSeuratObject(counts = epi, project ="epi")

epi.seu

epi.seu <- NormalizeData(epi.seu)#数据标准化

epi.seu <- FindVariableFeatures(epi.seu,selection.method ="vst", nfeatures = 2000)#提取富含信息最多的基因参与后续的降维,默认2000

epi.seu <- ScaleData(epi.seu)#对数据进行了行缩放,基因重要性一致,零上下浮动,基因标准一致

#默认是对2000做处理,ScaleData(epi.seu,features = rownames(epi.seu)) 对所有基因都进行了缩放

epi.seu #2000 variable features

epi.seu[["RNA"]]@counts#原始矩阵

epi.seu[["RNA"]]@data#Normalize以后的矩阵

epi.seu[["RNA"]]@scale.data#对data矩阵做缩放以后的矩阵

dim(epi.seu[["RNA"]]@scale.data)

dim(epi.seu[["RNA"]]@counts)

dim(epi.seu[["RNA"]]@data)

head(epi.seu@meta.data)#查看属性信息 orig.ident nCount_RNA:UMI count  nFeature_RNA:细胞里有多少基因

epi.seu[["percent.mt"]] <- PercentageFeatureSet(epi.seu, pattern = "^MT-")#线粒体基因表达占比,PercentageFeatureSet:提取符合某种格式的基因,计算他们的占比

#epi.seu@meta.data$percent.mt=

head(epi.seu@meta.data)

VlnPlot(epi.seu,features = c("nCount_RNA","nFeature_RNA","percent.mt"),pt.size = 0)

#以上四个指标可以用来辅助判断,group.by = 可以用来分组 默认orig.ident,确定阈值之后就可以过滤

epi.seu = subset(epi.seu,subset = nFeature_RNA > 8000 & nFeature_RNA < 16000)#初步过滤,继续过滤可以结合其他软件

#二、利用PCA进行数据降维

epi.seu <- RunPCA(epi.seu, npcs = 50, verbose = FALSE)#仅保留了前50维

#进行聚类,50取了前30进行了聚类

epi.seu <- FindNeighbors(epi.seu, dims = 1:30)

epi.seu <- FindClusters(epi.seu, resolution = 0.5)#resolution对后续结果精细程度的调节,数值越高越精细

#降维,进一步降维到二维平面

epi.seu <- RunUMAP(epi.seu, dims = 1:30)

epi.seu <- RunTSNE(epi.seu, dims = 1:30)

#图形展示

DimPlot(epi.seu,reduction = "umap",pt.size = 1,label = T,repel = T)

head(epi.seu@meta.data)

#RNA_snn_res.0.5 与revolution相关 seurat_clusters与最近一次的revolution操作结果一致

epi.seu#3 dimensional reductions calculated:多了三个降维之后的结果

#三、数据保存

saveRDS(epi.seu,file = "test.epi.seu.rds")

相关文章

网友评论

      本文标题:2022-04-11-初步学习Seurat

      本文链接:https://www.haomeiwen.com/subject/svnisrtx.html