美文网首页
通过tensorflow 建立神经网络

通过tensorflow 建立神经网络

作者: 吴建台 | 来源:发表于2017-12-08 16:20 被阅读0次

    import tensorflow as tf

    import numpy as np

    #添加神经层

    def add_layer(inputs,in_size,out_size,activation_function=None):

        Weights = tf.Variable(tf.random_normal([in_size,out_size]))

        biases = tf.Variable(tf.zeros([1,out_size]) + 0.1)

        Wx_plus_b = tf.matmul(inputs,Weights) + biases

        if activation_function is None:

            outputs = Wx_plus_b

        else:

            outputs = activation_function(Wx_plus_b)

        return outputs

    #设置输入数据

    x_data = np.linspace(-1,1,300)[:,np.newaxis]

    #设置噪音数据

    noise = np.random.normal(0,0.05,x_data.shape)

    #设置预期输出

    y_data = np.square(x_data)-0.5 + noise

    #设置传入变量

    xs = tf.placeholder(tf.float32,[None,1])

    ys = tf.placeholder(tf.float32,[None,1])

    #第一层,隐藏层,1个输入,10个输出(10个神经元)

    l1 = add_layer(xs,1,10,activation_function=tf.nn.relu)

    #输出层,一个输出

    prediction = add_layer(l1,10,1,activation_function=None)

    #误差/代价

    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))

    #最优化过程

    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

    init = tf.initialize_all_variables()

    sess = tf.Session()

    sess.run(init)

    训练和输出

    for i in range(1000):

        sess.run(train_step,feed_dict={xs:x_data,ys:y_data})

        if i % 50 == 0:

            print sess.run(loss,feed_dict={xs:x_data,ys:y_data})

    相关文章

      网友评论

          本文标题:通过tensorflow 建立神经网络

          本文链接:https://www.haomeiwen.com/subject/szgeixtx.html