Annotation 中文译过来就是注解、标释的意思,在 Java 中注解是一个很重要的知识点,但经常还是有点让新手不容易理解。
文档翻译的真生硬?如何怎解注解 ?
我个人认为,比较糟糕的技术文档主要特征之一就是:用专业名词来介绍专业名词。
Java 注解用于为 Java 代码提供元数据。作为元数据,注解不直接影响你的代码执行,但也有一些类型的注解实际上可以用于这一目的。Java 注解是从 Java5 开始添加到 Java 的。
这是大多数网站上对于 Java 注解,解释确实正确,但是说实在话,我第一次学习的时候,头脑一片空白。这什么鬼东西?听了像没听一样。概念太过于抽象,初学者实在是比较吃力才能够理解,然后随着自己开发过程中不断地强化练习,才会慢慢对它形成正确的认识。
如何让自己或者让读者能够比较直观地认识注解这个概念?是要去官方文档上翻译说明吗?我马上否定了这个答案。
初学者可以这样理解注解:想像代码具有生命,注解就是对于代码中某些鲜活个体的贴上去的一张标签。简化来讲,注解如同一张标签。
在未开始学习任何注解具体语法而言,你可以把注解看成一张标签。这有助于你快速地理解它的大致作用。如果初学者在学习过程有大脑放空的时候,请不要慌张,对自己说:
注解如同标签
因为平常开发少见,相信有不少的人员会认为注解的地位不高。其实同 classs 和 interface 一样,注解也属于一种类型。它是在 Java SE 5.0 版本中开始引入的概念。
注解的定义
注解通过 @interface关键字进行定义
public @interface TestAnnotation {
}
它的形式跟接口很类似,不过前面多了一个 @ 符号。上面的代码就创建了一个名字为 TestAnnotaion 的注解。
你可以简单理解为创建了一张名字为 TestAnnotation 的标签
注解的应用
上面创建了一个注解,那么注解的的使用方法是什么呢。
@TestAnnotation
public class Test {
}
创建一个类 Test,然后在类定义的地方加上 @TestAnnotation 就可以用 TestAnnotation 注解这个类了。
你可以简单理解为将 TestAnnotation 这张标签贴到 Test 这个类上面。
不过,要想注解能够正常工作,还需要介绍一下一个新的概念那就是元注解。
元注解
元注解是什么意思呢?
元注解是可以注解到注解上的注解,或者说元注解是一种基本注解,但是它能够应用到其它的注解上面。
如果难于理解的话,你可以这样理解。元注解也是一张标签,但是它是一张特殊的标签,它的作用和目的就是给其他普通的标签进行解释说明的。
元标签有 @Retention、@Documented、@Target、@Inherited、@Repeatable 5 种。
@Retention
Retention 的英文意为保留期的意思。当 @Retention 应用到一个注解上的时候,它解释说明了这个注解的的存活时间。
它的取值如下:
- RetentionPolicy.SOURCE 注解只在源码阶段保留,不再字节码文件中保留。
- RetentionPolicy.CLASS 注解在源码和字节码文件中保留,它不会被加载到 JVM 中。
- RetentionPolicy.RUNTIME 注解在源码和字节码文件中保留,它会被加载进入到 JVM 中,所以在程序运行时可以获取到它们。
我们可以这样的方式来加深理解,@Retention 去给一张标签解释的时候,它指定了这张标签张贴的时间。@Retention 相当于给一张标签上面盖了一张时间戳,时间戳指明了标签张贴的时间周期。
@Retention(RetentionPolicy.RUNTIME)
public @interface TestAnnotation {
}
上面的代码中,我们指定 TestAnnotation 在源码和字节码文件中保留,程序运行期间可以获取此注解。
@Documented
顾名思义,这个元注解肯定是和文档有关。它的作用是能够将注解中的元素包含到 Javadoc 中去。
@Target
Target 是目标的意思,@Target 指定了注解运用的地方。
你可以这样理解,当一个注解被 @Target 注解时,这个注解就被限定了运用的场景。
类比到标签,原本标签是你想张贴到哪个地方就到哪个地方,但是因为 @Target 的存在,它张贴的地方就非常具体了,比如只能张贴到方法上、类上、属性上、方法参数上等等。@Target 有下面的取值
- ElementType.TYPE 可以给一个类型进行注解,比如类、接口、枚举
- ElementType.FIELD 可以给属性进行注解
- ElementType.LOCAL_VARIABLE 可以给局部变量进行注解
- ElementType.METHOD 可以给方法进行注解
- ElementType.PACKAGE 可以给一个包进行注解
- ElementType.PARAMETER 可以给一个方法内的参数进行注解
- ElementType.ANNOTATION_TYPE 可以给一个注解进行注解
- ElementType.CONSTRUCTOR 可以给构造方法进行注解
@Inherited
Inherited 是继承的意思,但是它并不是说注解本身可以继承,而是说如果一个父类被 @Inherited 的话,如果它的子类没有被任何注解应用的话,那么这个子类就继承了父类的注解。说的比较抽象。代码来解释。
@Inherited
@Retention(RetentionPolicy.RUNTIME)
@interface Test {}
@Test
public class A {}
public class B extends A {}
注解 Test 被 @Inherited 修饰,之后类 A 被 Test 注解,类 B 继承 A,类 B 也拥有 Test 这个注解。
可以这样理解:
老子非常有钱,所以人们给他贴了一张标签叫做富豪。
老子的儿子长大后,只要没有和老子断绝父子关系,虽然别人没有给他贴标签,但是他自然也是富豪。
老子的孙子长大了,自然也是富豪。
这就是人们口中戏称的富一代,富二代,富三代。虽然叫法不同,好像好多个标签,但其实事情的本质也就是他们有一张共同的标签,也就是老子身上的那张富豪的标签。
@Repeatable
Repeatable 自然是可重复的意思。@Repeatable 是 Java 1.8 才加进来的,所以算是一个新的特性。
什么样的注解会多次应用呢?通常是注解的值可以同时取多个。
举个例子,一个人他既是程序员又是产品经理,同时他还是个画家。
@Repeatable(Persons.class)
@interface Person{
String role default "";
}
@interface Persons {
Person[] value();
}
@Person(role="artist")
@Person(role="coder")
@Person(role="PM")
public class SuperMan{
}
注意上面的代码,@Repeatable 注解了 Person。而 @Repeatable 后面括号中的类相当于一个容器注解。
什么是容器注解呢?就是用来存放其它注解的地方。它本身也是一个注解。
我们再看看代码中的相关容器注解。
@interface Persons {
Person[] value();
}
按照规定,它里面必须要有一个 value 的属性,属性类型是一个被 @Repeatable 注解过的注解数组,注意它是数组。
如果不好理解的话,可以这样理解。Persons 是一张总的标签,上面贴满了 Person 这种同类型但内容不一样的标签。把 Persons 给一个 SuperMan 贴上,相当于同时给他贴了程序员、产品经理、画家的标签。
我们可能对于 @Person(role=“PM”) 括号里面的内容感兴趣,它其实就是给 Person 这个注解的 role 属性赋值为 PM ,大家不明白正常,马上就讲到注解的属性这一块。
注解的属性
注解的属性也叫做成员变量。注解只有成员变量,没有方法。注解的成员变量在注解的定义中以“无形参的方法”形式来声明,其方法名定义了该成员变量的名字,其返回值定义了该成员变量的类型。
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface TestAnnotation {
int id();
String msg();
}
上面代码定义了 TestAnnotation 这个注解中拥有 id 和 msg 两个属性。在使用的时候,我们应该给它们进行赋值。
赋值的方式是在注解的括号内以 value="" 形式,多个属性之前用 ,隔开。
@TestAnnotation(id=3,msg="hello annotation")
public class Test {
}
需要注意的是,在注解中定义属性时它的类型必须是 8 种基本数据类型外加 类、接口、注解及它们的数组。
注解中属性可以有默认值,默认值需要用 default 关键值指定。比如:
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface TestAnnotation {
public int id() default -1;
public String msg() default "Hi";
}
TestAnnotation 中 id 属性默认值为 -1,msg 属性默认值为 Hi。
它可以这样应用。
@TestAnnotation()
public class Test {}
因为有默认值,所以无需要再在 @TestAnnotation 后面的括号里面进行赋值了,这一步可以省略。
另外,还有一种情况。如果一个注解内仅仅只有一个名字为 value 的属性时,应用这个注解时可以直接把属性值填写到括号内。
public @interface Check {
String value();
}
上面代码中,Check 这个注解只有 value 这个属性。所以可以这样应用。
@Check("hi")
int a;
这和下面的效果是一样的
@Check(value="hi")
int a;
最后,还需要注意的一种情况是一个注解没有任何属性。比如
public @interface Perform {}
那么在应用这个注解的时候,括号都可以省略。
@Perform
public void testMethod(){}
Java 预置的注解
学习了上面相关的知识,我们已经可以自己定义一个注解了。其实 Java 语言本身已经提供了几个现成的注解。
@Deprecated
这个元素是用来标记过时的元素,想必大家在日常开发中经常碰到。编译器在编译阶段遇到这个注解时会发出提醒警告,告诉开发者正在调用一个过时的元素比如过时的方法、过时的类、过时的成员变量。
public class Hero {
@Deprecated
public void say(){
System.out.println("Noting has to say!");
}
public void speak(){
System.out.println("I have a dream!");
}
}
定义了一个 Hero 类,它有两个方法 say() 和 speak() ,其中 say() 被 @Deprecated 注解。然后我们在 IDE 中分别调用它们。
........
可以看到,say() 方法上面被一条直线划了一条,这其实就是编译器识别后的提醒效果。
@Override
这个大家应该很熟悉了,提示子类要复写父类中被 @Override 修饰的方法
@SuppressWarnings
阻止警告的意思。之前说过调用被 @Deprecated 注解的方法后,编译器会警告提醒,而有时候开发者会忽略这种警告,他们可以在调用的地方通过 @SuppressWarnings 达到目的。
@SuppressWarnings("deprecation")
public void test1(){
Hero hero = new Hero();
hero.say();
hero.speak();
}
@SafeVarargs
参数安全类型注解。它的目的是提醒开发者不要用参数做一些不安全的操作,它的存在会阻止编译器产生 unchecked 这样的警告。它是在 Java 1.7 的版本中加入的。
@SafeVarargs // Not actually safe!
static void m(List<String>... stringLists) {
Object[] array = stringLists;
List<Integer> tmpList = Arrays.asList(42);
array[0] = tmpList; // Semantically invalid, but compiles without warnings
String s = stringLists[0].get(0); // Oh no, ClassCastException at runtime!
}
上面的代码中,编译阶段不会报错,但是运行时会抛出 ClassCastException 这个异常,所以它虽然告诉开发者要妥善处理,但是开发者自己还是搞砸了。
Java 官方文档说,未来的版本会授权编译器对这种不安全的操作产生错误警告。
@FunctionalInterface
函数式接口注解,这个是 Java 1.8 版本引入的新特性。函数式编程很火,所以 Java 8 也及时添加了这个特性。
函数式接口 (Functional Interface) 就是一个具有一个方法的普通接口。
@FunctionalInterface
public interface Runnable {
/**
* When an object implementing interface <code>Runnable</code> is used
* to create a thread, starting the thread causes the object's
* <code>run</code> method to be called in that separately executing
* thread.
* <p>
* The general contract of the method <code>run</code> is that it may
* take any action whatsoever.
*
* @see java.lang.Thread#run()
*/
public abstract void run();
}
我们进行线程开发中常用的 Runnable 就是一个典型的函数式接口,上面源码可以看到它就被 @FunctionalInterface 注解。
可能有人会疑惑,函数式接口标记有什么用,这个原因是函数式接口可以很容易转换为 Lambda 表达式。这是另外的主题了,有兴趣的同学请自己搜索相关知识点学习。
注解的提取
前面部分讲了注解的基本语法,现在是时候检测我们所学的内容了。
我们用标签来比作注解,前面的内容是讲怎么写注解,然后贴到哪个地方去,而现在我们要做的工作就是检阅这些标签内容。 形象的比喻就是你把这些注解标签在合适的时候撕下来,然后检阅上面的内容信息。
要想正确检阅注解,离不开一个手段,那就是反射。
注解与反射
注解通过反射获取。首先可以通过 Class 对象的 isAnnotationPresent() 方法判断它是否应用了某个注解
public boolean isAnnotationPresent(Class<? extends Annotation> annotationClass) {}
然后通过 getAnnotation() 方法来获取 Annotation 对象。
public <A extends Annotation> A getAnnotation(Class<A> annotationClass) {}
或者是 getAnnotations() 方法。
public Annotation[] getAnnotations() {}
前一种方法返回指定类型的注解,后一种方法返回这个元素上的所有注解。
如果获取到的 Annotation 如果不为 null,则就可以调用它们的属性了。比如
@TestAnnotation()
public class Test {
public static void main(String[] args) {
boolean hasAnnotation = Test.class.isAnnotationPresent(TestAnnotation.class);
if ( hasAnnotation ) {
TestAnnotation testAnnotation = Test.class.getAnnotation(TestAnnotation.class);
System.out.println("id:"+testAnnotation.id());
System.out.println("msg:"+testAnnotation.msg());
}
}
}
程序的运行结果是:
id:-1
msg:
这个正是 TestAnnotation 中 id 和 msg 的默认值。
上面的例子中,只是检阅出了注解在类上的注解,其实属性、方法上的注解照样是可以的。同样还是反射。
@TestAnnotation(msg="hello")
public class Test {
@Check(value="hi")
int a;
@Perform
public void testMethod(){}
@SuppressWarnings("deprecation")
public void test1(){
Hero hero = new Hero();
hero.say();
hero.speak();
}
public static void main(String[] args) {
boolean hasAnnotation = Test.class.isAnnotationPresent(TestAnnotation.class);
if ( hasAnnotation ) {
TestAnnotation testAnnotation = Test.class.getAnnotation(TestAnnotation.class);
//获取类的注解
System.out.println("id:"+testAnnotation.id());
System.out.println("msg:"+testAnnotation.msg());
}
try {
Field a = Test.class.getDeclaredField("a");
a.setAccessible(true);
//获取一个成员变量上的注解
Check check = a.getAnnotation(Check.class);
if ( check != null ) {
System.out.println("check value:"+check.value());
}
Method testMethod = Test.class.getDeclaredMethod("testMethod");
if ( testMethod != null ) {
// 获取方法中的注解
Annotation[] ans = testMethod.getAnnotations();
for( int i = 0;i < ans.length;i++) {
System.out.println("method testMethod annotation:"+ans[i].annotationType().getSimpleName());
}
}
} catch (NoSuchFieldException e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println(e.getMessage());
} catch (SecurityException e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println(e.getMessage());
} catch (NoSuchMethodException e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println(e.getMessage());
}
}
}
id:-1
msg:hello
check value:hi
method testMethod annotation:Perform
需要注意的是,如果一个注解要在运行时被成功提取,那么 @Retention(RetentionPolicy.RUNTIME) 是必须的。
注解的使用场景
我相信博文讲到这里大家都很熟悉了注解,但是有不少同学肯定会问,注解到底有什么用呢?
对啊注解到底有什么用?
我们不妨将目光放到 Java 官方文档上来。
文章开始的时候,我们用标签来类比注解。但标签比喻只是手段,而不是目的。为的是让大家在初次学习注解时能够不被那些抽象的新概念搞懵。既然现在,我们已经对注解有所了解,我们不妨再仔细阅读官方最严谨的文档。
注解是一系列元数据,它提供数据用来解释程序代码,但是注解并非是所解释的代码本身的一部分。注解对于代码的运行效果没有直接影响。
注解有许多用处,主要如下:
- 提供信息给编译器: 编译器可以利用注解来探测错误和警告信息
- 编译阶段时的处理: 软件工具可以用来利用注解信息来生成代码、Html文档或者做其它相应处理。
- 运行时的处理: 某些注解可以在程序运行的时候接受代码的提取
值得注意的是,注解不是代码本身的一部分。
如果难于理解,可以这样看。标签只是某些人对于其他事物的评价,但是标签不会改变事物本身,标签只是特定人群的手段。所以,注解同样无法改变代码本身,注解只是某些工具的的工具。
还是回到官方文档的解释上,注解主要针对的是编译器和其它工具软件(SoftWare tool)。
当开发者使用了Annotation 修饰了类、方法、Field 等成员之后,这些 Annotation 不会自己生效,必须由开发者提供相应的代码来提取并处理 Annotation 信息。这些提取和处理 Annotation 的代码统称为 APT(Annotation Processing Tool)。
现在,我们可以给自己答案了,注解有什么用?给谁用?给 编译器或者 APT 用的。
总结
- 如果注解难于理解,你就把它类同于标签,标签为了解释事物,注解为了解释代码。
- 注解的基本语法,创建如同接口,但是多了个 @ 符号。
- 注解的元注解。
- 注解的属性。
- 注解主要给编译器及工具类型的软件用的。
- 注解的提取需要借助于 Java 的反射技术,反射比较慢,所以注解使用时* 也需要谨慎计较时间成本。
网友评论