美文网首页
Hadoop之MapReduce And Yarn

Hadoop之MapReduce And Yarn

作者: 白纸糊 | 来源:发表于2019-02-25 19:19 被阅读0次

    第1章 MapReduce概述

    1.1 MapReduce定义


    image.png

    1.2 MapReduce优缺点


    image.png
    image.png
    image.png

    1.3 MapReduce核心思想


    image.png

    1)分布式的运算程序往往需要分成至少2个阶段。
    2)第一个阶段的MapTask并发实例,完全并行运行,互不相干。
    3)第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出。
    4)MapReduce编程模型只能包含一个Map阶段和一个Reduce阶段,如果用户的业务逻辑非常复杂,那就只能多个MapReduce程序,串行运行。
    总结:分析WordCount数据流走向深入理解MapReduce核心思想。


    1.4 MapReduce进程


    image.png

    1.5 常用数据序列化类型


    image.png

    1.7 MapReduce编程规范
    用户编写的程序分成三个部分:Mapper、Reducer和Driver。


    image.png
    image.png

    1.8 编写
    pom.xml

            <dependency>
                <groupId>junit</groupId>
                <artifactId>junit</artifactId>
                <version>RELEASE</version>
            </dependency>
            <dependency>
                <groupId>org.apache.logging.log4j</groupId>
                <artifactId>log4j-core</artifactId>
                <version>2.8.2</version>
            </dependency>
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-common</artifactId>
                <version>2.7.2</version>
            </dependency>
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-client</artifactId>
                <version>2.7.2</version>
            </dependency>
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-hdfs</artifactId>
                <version>2.7.2</version>
            </dependency>
    </dependencies>
    

    log4j.properties

    log4j.rootLogger=INFO, stdout
    log4j.appender.stdout=org.apache.log4j.ConsoleAppender
    log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
    log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
    log4j.appender.logfile=org.apache.log4j.FileAppender
    log4j.appender.logfile.File=target/spring.log
    log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
    log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
    

    Mapper

    package com.atguigu.mapreduce;
    import java.io.IOException;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;
    
    public class WordcountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
        
        Text k = new Text();
        IntWritable v = new IntWritable(1);
        
        @Override
        protected void map(LongWritable key, Text value, Context context)   throws IOException, InterruptedException {
            
            // 1 获取一行
            String line = value.toString();
            
            // 2 切割
            String[] words = line.split(" ");
            
            // 3 输出
            for (String word : words) {
                
                k.set(word);
                context.write(k, v);
            }
        }
    }
    

    Reducer

    package com.atguigu.mapreduce.wordcount;
    import java.io.IOException;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Reducer;
    
    public class WordcountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
    
    int sum;
    IntWritable v = new IntWritable();
    
        @Override
        protected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {
            
            // 1 累加求和
            sum = 0;
            for (IntWritable count : values) {
                sum += count.get();
            }
            
            // 2 输出
           v.set(sum);
            context.write(key,v);
        }
    

    Driver

    package com.atguigu.mapreduce.wordcount;
    import java.io.IOException;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    public class WordcountDriver {
    
        public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
    
            // 1 获取配置信息以及封装任务
            Configuration configuration = new Configuration();
            Job job = Job.getInstance(configuration);
    
            // 2 设置jar加载路径
            job.setJarByClass(WordcountDriver.class);
    
            // 3 设置map和reduce类
            job.setMapperClass(WordcountMapper.class);
            job.setReducerClass(WordcountReducer.class);
    
            // 4 设置map输出
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(IntWritable.class);
    
            // 5 设置最终输出kv类型
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(IntWritable.class);
            
            // 6 设置输入和输出路径
            FileInputFormat.setInputPaths(job, new Path(args[0]));
            FileOutputFormat.setOutputPath(job, new Path(args[1]));
    
            // 7 提交
            boolean result = job.waitForCompletion(true);
    
            System.exit(result ? 0 : 1);
        }
    }
    

    集群上测试
    (0)用maven打jar包,需要添加的打包插件依赖
    注意:标记红颜色的部分需要替换为自己工程主类

    <build>
            <plugins>
                <plugin>
                    <artifactId>maven-compiler-plugin</artifactId>
                    <version>2.3.2</version>
                    <configuration>
                        <source>1.8</source>
                        <target>1.8</target>
                    </configuration>
                </plugin>
                <plugin>
                    <artifactId>maven-assembly-plugin </artifactId>
                    <configuration>
                        <descriptorRefs>
                            <descriptorRef>jar-with-dependencies</descriptorRef>
                        </descriptorRefs>
                        <archive>
                            <manifest>
                                <mainClass>com.atguigu.mr.WordcountDriver</mainClass>
                            </manifest>
                        </archive>
                    </configuration>
                    <executions>
                        <execution>
                            <id>make-assembly</id>
                            <phase>package</phase>
                            <goals>
                                <goal>single</goal>
                            </goals>
                        </execution>
                    </executions>
                </plugin>
            </plugins>
        </build>
    

    第2章 Hadoop序列化

    image.png
    image.png

    第3章 MapReduce框架原理

    image.png

    切片与MapTask并行度决定机制

    1.问题引出

    MapTask的并行度决定Map阶段的任务处理并发度,进而影响到整个Job的处理速度。

    思考:1G的数据,启动8个MapTask,可以提高集群的并发处理能力。那么1K的数据,也启动8个MapTask,会提高集群性能吗?MapTask并行任务是否越多越好呢?哪些因素影响了MapTask并行度?
    2.MapTask并行度决定机制

    数据块:Block是HDFS物理上把数据分成一块一块。

    数据切片:数据切片只是在逻辑上对输入进行分片,并不会在磁盘上将其切分成片进行存储。

    image.png
    image.png
    image.png
    image.png
    image.png

    2.流程详解
    上面的流程是整个MapReduce最全工作流程,但是Shuffle过程只是从第7步开始到第16步结束,具体Shuffle过程详解,如下:
    1)MapTask收集我们的map()方法输出的kv对,放到内存缓冲区中
    2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件
    3)多个溢出文件会被合并成大的溢出文件
    4)在溢出过程及合并的过程中,都要调用Partitioner进行分区和针对key进行排序
    5)ReduceTask根据自己的分区号,去各个MapTask机器上取相应的结果分区数据
    6)ReduceTask会取到同一个分区的来自不同MapTask的结果文件,ReduceTask会将这些文件再进行合并(归并排序)
    7)合并成大文件后,Shuffle的过程也就结束了,后面进入ReduceTask的逻辑运算过程(从文件中取出一个一个的键值对Group,调用用户自定义的reduce()方法)
    3.注意
    Shuffle中的缓冲区大小会影响到MapReduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快。
    缓冲区的大小可以通过参数调整,参数:io.sort.mb默认100M。


    image.png

    Yarn工作机制

    image.png

    1)MR程序提交到客户端所在的节点。
    (2)YarnRunner向ResourceManager申请一个Application。
    (3)RM将该应用程序的资源路径返回给YarnRunner。
    (4)该程序将运行所需资源提交到HDFS上。
    (5)程序资源提交完毕后,申请运行mrAppMaster。
    (6)RM将用户的请求初始化成一个Task。
    (7)其中一个NodeManager领取到Task任务。
    (8)该NodeManager创建容器Container,并产生MRAppmaster。
    (9)Container从HDFS上拷贝资源到本地。
    (10)MRAppmaster向RM 申请运行MapTask资源。
    (11)RM将运行MapTask任务分配给另外两个NodeManager,另两个NodeManager分别领取任务并创建容器。
    (12)MR向两个接收到任务的NodeManager发送程序启动脚本,这两个NodeManager分别启动MapTask,MapTask对数据分区排序。
    (13)MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask。
    (14)ReduceTask向MapTask获取相应分区的数据。
    (15)程序运行完毕后,MR会向RM申请注销自己。


    image.png

    作业提交全过程详解
    (1)作业提交
    第1步:Client调用job.waitForCompletion方法,向整个集群提交MapReduce作业。
    第2步:Client向RM申请一个作业id。
    第3步:RM给Client返回该job资源的提交路径和作业id。
    第4步:Client提交jar包、切片信息和配置文件到指定的资源提交路径。
    第5步:Client提交完资源后,向RM申请运行MrAppMaster。
    (2)作业初始化
    第6步:当RM收到Client的请求后,将该job添加到容量调度器中。
    第7步:某一个空闲的NM领取到该Job。
    第8步:该NM创建Container,并产生MRAppmaster。
    第9步:下载Client提交的资源到本地。
    (3)任务分配
    第10步:MrAppMaster向RM申请运行多个MapTask任务资源。
    第11步:RM将运行MapTask任务分配给另外两个NodeManager,另两个NodeManager分别领取任务并创建容器。
    (4)任务运行
    第12步:MR向两个接收到任务的NodeManager发送程序启动脚本,这两个NodeManager分别启动MapTask,MapTask对数据分区排序。
    第13步:MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask。
    第14步:ReduceTask向MapTask获取相应分区的数据。
    第15步:程序运行完毕后,MR会向RM申请注销自己。
    (5)进度和状态更新
    YARN中的任务将其进度和状态(包括counter)返回给应用管理器, 客户端每秒(通过mapreduce.client.progressmonitor.pollinterval设置)向应用管理器请求进度更新, 展示给用户。
    (6)作业完成
    除了向应用管理器请求作业进度外, 客户端每5秒都会通过调用waitForCompletion()来检查作业是否完成。时间间隔可以通过mapreduce.client.completion.pollinterval来设置。作业完成之后, 应用管理器和Container会清理工作状态。作业的信息会被作业历史服务器存储以备之后用户核查。


    目前,Hadoop作业调度器主要有三种:FIFO、Capacity Scheduler和Fair Scheduler。Hadoop2.7.2默认的资源调度器是Capacity Scheduler。


    image.png
    image.png
    image.png

    相关文章

      网友评论

          本文标题:Hadoop之MapReduce And Yarn

          本文链接:https://www.haomeiwen.com/subject/tdeelqtx.html