blockcanary源码学习随笔

作者: 黄俊彬 | 来源:发表于2018-08-23 16:35 被阅读0次

    blockcanary是什么?

    blockcanary是国内开发者MarkZhai开发的一套性能监控组件,它对主线程操作进行了完全透明的监控,并能输出有效的信息,帮助开发分析、定位到问题所在,迅速优化应用

    下图为官方原理介绍示例图:

    image.png

    简介

    Github地址:blockcanary

    特点

    • 非侵入式
    • 使用简单
    • 实时监控
    • 提供完善的堆栈及内存信息

    Android渲染机制

    Android系统每隔16ms发出VSYNC信号,触发对UI进行渲染, 如果每次渲染都成功,这样就能够达到流畅的画面所需要的60fps,为了能够实现60fps,这意味着程序的大多数操作都必须在16ms内完成。如果超过了16ms那么可能就出现丢帧的情况。

    本文主要对blockcanary的原理进行分析,关于渲染的详细机制及优化,推荐参考如下文章:

    Android性能优化-渲染优化

    blockcanary怎么用?

    1、gradle引入库

     debugImplementation 'com.github.markzhai:blockcanary-android:1.5.0'
     releaseImplementation 'com.github.markzhai:blockcanary-no-op:1.5.0'
     
    

    2、自定义Application并且在onCreate中进行初始化

    public class ExampleApplication extends Application {
    
        @Override public void onCreate() {
            super.onCreate();
            BlockCanary.install(this, new BlockCanaryContext()).start();
        }
    }
    

    blockcanary核心执行流程是怎样?

    blockcanary的核心原理是通过自定义一个Printer,设置到主线程ActivityThread的MainLooper中。MainLooper在dispatch消息前后都会调用Printer进行打印。从而获取前后执行的时间差值,判断是否超过设置的阈值。如果超过,则会将记录的栈信息及cpu信息发通知到前台。

    关键类功能说明

    说明
    BlockCanary 外观类,提供初始化及开始、停止监听
    BlockCanaryContext 配置上下文,可配置id、当前网络信息、卡顿阈值、log保存路径等
    BlockCanaryInternals blockcanary核心的调度类,内部包含了monitor(设置到MainLooper的printer)、stackSampler(栈信息处理器)、cpuSampler(cpu信息处理器)、mInterceptorChain(注册的拦截器)、以及onBlockEvent的回调及拦截器的分发
    LooperMonitor 继承了Printer接口,用于设置到MainLooper中。通过复写println的方法来获取MainLooper的dispatch前后的执行时间差,并控制stackSampler和cpuSampler的信息采集。
    StackSampler 用于获取线程的栈信息,将采集的栈信息存储到一个以key为时间戳的LinkHashMap中。通过mCurrentThread.getStackTrace()获取当前线程的StackTraceElement
    CpuSampler 用于获取cpu信息,将采集的cpu信息存储到一个以key为时间戳的LinkHashMap中。通过读取/proc/stat文件获取cpu的信息
    DisplayService 继承了BlockInterceptor拦截器,onBlock回调会触发发送前台通知
    DisplayActivity 用于显示记录的异常信息Activity

    代码执行流程

    leakcanary的核心流程主要包含3个步骤。

    1、init-初始化

    2、monitor-监听MainLooper的dispatch时间差,推送前台通知

    3、dump-采集线程栈信息及cpu信息

    这里先上一下整体的流程图,建议结合源码进行查看。

    image

    下面我们通过上述3个步骤相关的源码来进行分析。

    1、init

    根据Application中的使用,我们首先看install方法

      public static BlockCanary install(Context context, BlockCanaryContext blockCanaryContext) {
            //BlockCanaryContext.init会将保存应用的applicationContext和用户设置的配置参数
            BlockCanaryContext.init(context, blockCanaryContext);
            //etEnabled将根据用户的通知栏消息配置开启
            setEnabled(context, DisplayActivity.class, BlockCanaryContext.get().displayNotification());
            return get();
        }
        
    

    接着看get方法的实现如下:

        //使用单例创建了一个BlockCanary对象
        public static BlockCanary get() {
            if (sInstance == null) {
                synchronized (BlockCanary.class) {
                    if (sInstance == null) {
                        sInstance = new BlockCanary();
                    }
                }
            }
            return sInstance;
        }
    

    接着我们看BlockCanary的对象的构造方法实现如下:

    private BlockCanary() {
            //初始化lockCanaryInternals调度类
            BlockCanaryInternals.setContext(BlockCanaryContext.get());
            mBlockCanaryCore = BlockCanaryInternals.getInstance();
            //为BlockCanaryInternals添加拦截器(责任链)BlockCanaryContext对BlockInterceptor是空实现
            mBlockCanaryCore.addBlockInterceptor(BlockCanaryContext.get());
            if (!BlockCanaryContext.get().displayNotification()) {
                return;
            }
            //DisplayService只在开启通知栏消息的时候添加,当卡顿发生时将通过DisplayService发起通知栏消息
            mBlockCanaryCore.addBlockInterceptor(new DisplayService());
    
        }
    
    

    接着我们看BlockCanaryInternals的构造方法,实现如下:

    public BlockCanaryInternals() {
            //初始化栈采集器
            stackSampler = new StackSampler(
                    Looper.getMainLooper().getThread(),
                    sContext.provideDumpInterval());
            //初始化cpu采集器
            cpuSampler = new CpuSampler(sContext.provideDumpInterval());
    
            //初始化LooperMonitor,并实现了onBlockEvent的回调,该回调会在触发阈值后被调用
            setMonitor(new LooperMonitor(new LooperMonitor.BlockListener() {
    
                @Override
                public void onBlockEvent(long realTimeStart, long realTimeEnd,
                                         long threadTimeStart, long threadTimeEnd) {
                    ArrayList<String> threadStackEntries = stackSampler
                            .getThreadStackEntries(realTimeStart, realTimeEnd);
                    if (!threadStackEntries.isEmpty()) {
                        BlockInfo blockInfo = BlockInfo.newInstance()
                                .setMainThreadTimeCost(realTimeStart, realTimeEnd, threadTimeStart, threadTimeEnd)
                                .setCpuBusyFlag(cpuSampler.isCpuBusy(realTimeStart, realTimeEnd))
                                .setRecentCpuRate(cpuSampler.getCpuRateInfo())
                                .setThreadStackEntries(threadStackEntries)
                                .flushString();
                        LogWriter.save(blockInfo.toString());
    
                        if (mInterceptorChain.size() != 0) {
                            for (BlockInterceptor interceptor : mInterceptorChain) {
                                interceptor.onBlock(getContext().provideContext(), blockInfo);
                            }
                        }
                    }
                }
            }, getContext().provideBlockThreshold(), getContext().stopWhenDebugging()));
    
            LogWriter.cleanObsolete();
        }
    

    2、monitor

    首先我们先看下系统的Looper的loop()方法中对于printer的使用,如下:

       for (;;) {
                Message msg = queue.next(); // might block
                if (msg == null) {
                    // No message indicates that the message queue is quitting.
                    return;
                }
    
                // 执行dispatchMessage前,执行Printer的println方法
                final Printer logging = me.mLogging;
                if (logging != null) {
                    logging.println(">>>>> Dispatching to " + msg.target + " " +
                            msg.callback + ": " + msg.what);
                }
    
                final long traceTag = me.mTraceTag;
                long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
                long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
                if (thresholdOverride > 0) {
                    slowDispatchThresholdMs = thresholdOverride;
                    slowDeliveryThresholdMs = thresholdOverride;
                }
                final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
                final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);
    
                final boolean needStartTime = logSlowDelivery || logSlowDispatch;
                final boolean needEndTime = logSlowDispatch;
    
                if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                    Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
                }
    
                final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
                final long dispatchEnd;
                try {
                    msg.target.dispatchMessage(msg);
                    dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
                } finally {
                    if (traceTag != 0) {
                        Trace.traceEnd(traceTag);
                    }
                }
                if (logSlowDelivery) {
                    if (slowDeliveryDetected) {
                        if ((dispatchStart - msg.when) <= 10) {
                            Slog.w(TAG, "Drained");
                            slowDeliveryDetected = false;
                        }
                    } else {
                        if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
                                msg)) {
                            // Once we write a slow delivery log, suppress until the queue drains.
                            slowDeliveryDetected = true;
                        }
                    }
                }
                if (logSlowDispatch) {
                    showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
                }
              // 执行dispatchMessage后,执行Printer的println方法
                if (logging != null) {
                    logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
                }
    
                // Make sure that during the course of dispatching the
                // identity of the thread wasn't corrupted.
                final long newIdent = Binder.clearCallingIdentity();
                if (ident != newIdent) {
                    Log.wtf(TAG, "Thread identity changed from 0x"
                            + Long.toHexString(ident) + " to 0x"
                            + Long.toHexString(newIdent) + " while dispatching to "
                            + msg.target.getClass().getName() + " "
                            + msg.callback + " what=" + msg.what);
                }
    
                msg.recycleUnchecked();
            }
    

    当install进行初始化完成后,接着会调用start()方法,实现如下:

      public void start() {
            if (!mMonitorStarted) {
                mMonitorStarted = true;
                //把mBlockCanaryCore中的monitor设置MainLooper中进行监听
                Looper.getMainLooper().setMessageLogging(mBlockCanaryCore.monitor);
            }
        }
    

    当MainLooper执行dispatch的前后会调用printer的println方法,所以这里我们看LooperMonitor对println方法的实现如下:

     @Override
        public void println(String x) {
            //如果再debug模式,不执行监听
            if (mStopWhenDebugging && Debug.isDebuggerConnected()) {
                return;
            }
            if (!mPrintingStarted) {//dispatchMesage前执行的println
                //记录开始时间
                mStartTimestamp = System.currentTimeMillis();
                mStartThreadTimestamp = SystemClock.currentThreadTimeMillis();
                mPrintingStarted = true;
                //开始采集栈及cpu信息
                startDump();
            } else {//dispatchMesage后执行的println
                //获取结束时间
                final long endTime = System.currentTimeMillis();
                mPrintingStarted = false;
                //判断耗时是否超过阈值
                if (isBlock(endTime)) {
                    notifyBlockEvent(endTime);
                }
                stopDump();
            }
        }
     //判断是否超过阈值
     private boolean isBlock(long endTime) {
            return endTime - mStartTimestamp > mBlockThresholdMillis;
        }
    //回调监听
     private void notifyBlockEvent(final long endTime) {
            final long startTime = mStartTimestamp;
            final long startThreadTime = mStartThreadTimestamp;
            final long endThreadTime = SystemClock.currentThreadTimeMillis();
            HandlerThreadFactory.getWriteLogThreadHandler().post(new Runnable() {
                @Override
                public void run() {
                    mBlockListener.onBlockEvent(startTime, endTime, startThreadTime, endThreadTime);
                }
            });
        }
    

    当发现时间差超过阈值后,会回调onBlockEvent。具体的实现在BlockCanaryInternals的构造方法中,如下:

     setMonitor(new LooperMonitor(new LooperMonitor.BlockListener() {
    
                @Override
                public void onBlockEvent(long realTimeStart, long realTimeEnd,
                                         long threadTimeStart, long threadTimeEnd) {
                    //根据开始及结束时间,从栈的map当中获取记录信息
                    ArrayList<String> threadStackEntries = stackSampler
                            .getThreadStackEntries(realTimeStart, realTimeEnd);
                    if (!threadStackEntries.isEmpty()) {
                        //构建 BlockInfo对象,设置相关的信息
                        BlockInfo blockInfo = BlockInfo.newInstance()
                                .setMainThreadTimeCost(realTimeStart, realTimeEnd, threadTimeStart, threadTimeEnd)
                                .setCpuBusyFlag(cpuSampler.isCpuBusy(realTimeStart, realTimeEnd))
                                .setRecentCpuRate(cpuSampler.getCpuRateInfo())
                                .setThreadStackEntries(threadStackEntries)
                                .flushString();
                        //记录信息
                        LogWriter.save(blockInfo.toString());
                        //遍历拦截器,通知
                        if (mInterceptorChain.size() != 0) {
                            for (BlockInterceptor interceptor : mInterceptorChain) {
                                interceptor.onBlock(getContext().provideContext(), blockInfo);
                            }
                        }
                    }
                }
            }, getContext().provideBlockThreshold(), getContext().stopWhenDebugging()));
    

    最后我们看拦截器的实现DisplayService,会发送前台的通知,代码如下:

      @Override
        public void onBlock(Context context, BlockInfo blockInfo) {
            Intent intent = new Intent(context, DisplayActivity.class);
            intent.putExtra("show_latest", blockInfo.timeStart);
            intent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK | Intent.FLAG_ACTIVITY_CLEAR_TOP);
            PendingIntent pendingIntent = PendingIntent.getActivity(context, 1, intent, FLAG_UPDATE_CURRENT);
            String contentTitle = context.getString(R.string.block_canary_class_has_blocked, blockInfo.timeStart);
            String contentText = context.getString(R.string.block_canary_notification_message);
            show(context, contentTitle, contentText, pendingIntent);
        }
    

    3、dump

    从上面的流程我们可以知道,当dispatchMessage前的println触发时,会执行dump的start方法,当dispatchMessage后的println触发时,会执行dump的stop方法。

     private void startDump() {
            if (null != BlockCanaryInternals.getInstance().stackSampler) {
                BlockCanaryInternals.getInstance().stackSampler.start();
            }
    
            if (null != BlockCanaryInternals.getInstance().cpuSampler) {
                BlockCanaryInternals.getInstance().cpuSampler.start();
            }
        }
    
        private void stopDump() {
            if (null != BlockCanaryInternals.getInstance().stackSampler) {
                BlockCanaryInternals.getInstance().stackSampler.stop();
            }
    
            if (null != BlockCanaryInternals.getInstance().cpuSampler) {
                BlockCanaryInternals.getInstance().cpuSampler.stop();
            }
        }
    

    下面我们分Stacksampler和CpuSampler进行介绍。

    1、Stacksampler

    start()的执行流程如下:

     public void start() {
            if (mShouldSample.get()) {
                return;
            }
            mShouldSample.set(true);
    
            HandlerThreadFactory.getTimerThreadHandler().removeCallbacks(mRunnable);
            //通过一个HandlerThread延时执行了mRunnable
            HandlerThreadFactory.getTimerThreadHandler().postDelayed(mRunnable,
                    BlockCanaryInternals.getInstance().getSampleDelay());
        }
       //mRunnable在基类AbstractSampler中定义
      private Runnable mRunnable = new Runnable() {
            @Override
            public void run() {
                //抽象方法
                doSample();
                //继续执行采集
                if (mShouldSample.get()) {
                    HandlerThreadFactory.getTimerThreadHandler()
                            .postDelayed(mRunnable, mSampleInterval);
                }
            }
        };
     //Stacksampler的doSample()实现
      @Override
        protected void doSample() {
            StringBuilder stringBuilder = new StringBuilder();
            //通过mCurrentThread.getStackTrace()获取StackTraceElement,加入到StringBuilder
            for (StackTraceElement stackTraceElement : mCurrentThread.getStackTrace()) {
                stringBuilder
                        .append(stackTraceElement.toString())
                        .append(BlockInfo.SEPARATOR);
            }
    
            synchronized (sStackMap) {
            //Lru算法,控制LinkHashMap的长度
                if (sStackMap.size() == mMaxEntryCount && mMaxEntryCount > 0) {
                    sStackMap.remove(sStackMap.keySet().iterator().next());
                }
                //加入到map中
                sStackMap.put(System.currentTimeMillis(), stringBuilder.toString());
            }
        }
    

    stop()的执行流程如下:

     public void stop() {
            if (!mShouldSample.get()) {
                return;
            }
            //设置控制变量
            mShouldSample.set(false);
            //取消handler消息
            HandlerThreadFactory.getTimerThreadHandler().removeCallbacks(mRunnable);
        }
    

    2、CpuSampler

    其他执行流程均与StackSampler一致,这里主要分析doSample的实现,如下:

     //主要通过获取/proc/stat文件 去获取cpu的信息
      protected void doSample() {
            BufferedReader cpuReader = null;
            BufferedReader pidReader = null;
    
            try {
                cpuReader = new BufferedReader(new InputStreamReader(
                        new FileInputStream("/proc/stat")), BUFFER_SIZE);
                String cpuRate = cpuReader.readLine();
                if (cpuRate == null) {
                    cpuRate = "";
                }
    
                if (mPid == 0) {
                    mPid = android.os.Process.myPid();
                }
                pidReader = new BufferedReader(new InputStreamReader(
                        new FileInputStream("/proc/" + mPid + "/stat")), BUFFER_SIZE);
                String pidCpuRate = pidReader.readLine();
                if (pidCpuRate == null) {
                    pidCpuRate = "";
                }
    
                parse(cpuRate, pidCpuRate);
            } catch (Throwable throwable) {
                Log.e(TAG, "doSample: ", throwable);
            } finally {
                try {
                    if (cpuReader != null) {
                        cpuReader.close();
                    }
                    if (pidReader != null) {
                        pidReader.close();
                    }
                } catch (IOException exception) {
                    Log.e(TAG, "doSample: ", exception);
                }
            }
        }
    

    blockcanary是如何进行卡顿的判定?

    blockcanary的核心原理是通过自定义一个Printer,设置到主线程ActivityThread的MainLooper中。MainLooper在dispatch消息前后都会调用Printer进行打印。从而获取前后执行的时间差值,判断是否超过设置的阈值。如果超过,则判定为卡顿。

    leakcanary是如何获取线程的堆栈信息?

    通过mCurrentThread.getStackTrace()方法,遍历获取StackTraceElement,转化为一个StringBuilder的value,并存储到一个key为时间戳的LinkHashMap中。

    leakcanary是如何获取cpu的信息?

    通过读取/proc/stat文件,获取所有CPU活动的信息来计算CPU使用率。解析出信息后,转化为一个StringBuilder的value,并存储到一个key为时间戳的LinkHashMap中。

    总结

    思考

    blockcanary充分的利用了Loop的机制,在MainLooper的loop方法中执行dispatchMessage前后都会执行printer的println进行输出,并且提供了方法设置printer。通过分析前后打印的时差与阈值进行比对,从而判定是否卡顿。

    参考资料

    Android性能优化-渲染优化

    Android UI卡顿监测框架BlockCanary原理分析

    相关文章

      网友评论

        本文标题:blockcanary源码学习随笔

        本文链接:https://www.haomeiwen.com/subject/tirmiftx.html