美文网首页
Spark学习笔记(2)通信分析

Spark学习笔记(2)通信分析

作者: 灯火gg | 来源:发表于2019-01-29 17:52 被阅读0次

什么是RPC通信

RPC是指远程过程调用,也就是说两台服务器A,B,一个应用部署在A服务器上,想要调用B服务器上应用提供的函数或者方法,由于不在同一个内存空间,不能直接调用,需要通过网络来表达调用的语义和传达调用的数据。

SparkRPC通信

Spark1.6+推出以RPCEnv,RPCEndopoint,RPCEndpointRef为核心的新型架构下的通信方式。具体实现方式又Akka和Netty两种方式。kka是基于Scala的Actor的分布式消息通信系统,Netty是由JBOSS提供的一个java开源框架。Netty提供异步的、事件驱动的网络应用程序框架和工具,用以快速开发高性能、高可靠性的网络服务器和客户端程序。

RPC

spark 启动消息通信基本过程

首先启动Spark会执行sbin/start-all.sh

# Start all spark daemons.
# Starts the master on this node.
# Starts a worker on each node specified in conf/slaves

sbin="`dirname "$0"`"
sbin="`cd "$sbin"; pwd`"

TACHYON_STR=""

while (( "$#" )); do
case $1 in
    --with-tachyon)
      TACHYON_STR="--with-tachyon"
      ;;
  esac
shift
done

# Load the Spark configuration
. "$sbin/spark-config.sh"

# Start Master
"$sbin"/start-master.sh $TACHYON_STR

# Start Workers
"$sbin"/start-slaves.sh $TACHYON_STR

通过查看start-master.sh,发现先启动master,再启动worker。

"$sbin"/spark-daemon.sh start org.apache.spark.deploy.master.Master 1 \
  --ip $SPARK_MASTER_IP --port $SPARK_MASTER_PORT --webui-port $SPARK_MASTER_WEBUI_PORT \
  $ORIGINAL_ARGS

最终执行spark-daemon.sh start org.apache.spark.deploy.master.Master

接下来我们来看Master的main方法

private[deploy] object Master extends Logging {
  val SYSTEM_NAME = "sparkMaster"
  val ENDPOINT_NAME = "Master"

  def main(argStrings: Array[String]) {
    Thread.setDefaultUncaughtExceptionHandler(new SparkUncaughtExceptionHandler(
      exitOnUncaughtException = false))
    Utils.initDaemon(log)
    val conf = new SparkConf
    val args = new MasterArguments(argStrings, conf)
    val (rpcEnv, _, _) = 
//将脚本中传入的RpcEnv和host,port启动Master
startRpcEnvAndEndpoint(args.host, args.port, args.webUiPort, conf)
    rpcEnv.awaitTermination()
  }

/**
   * Start the Master and return a three tuple of:
   *   (1) The Master RpcEnv
   *   (2) The web UI bound port
   *   (3) The REST server bound port, if any
   */
  def startRpcEnvAndEndpoint(
      host: String,
      port: Int,
      webUiPort: Int,
      conf: SparkConf): (RpcEnv, Int, Option[Int]) = {
    val securityMgr = new SecurityManager(conf)
    val rpcEnv = RpcEnv.create(SYSTEM_NAME, host, port, conf, securityMgr)
    val masterEndpoint = rpcEnv.setupEndpoint(ENDPOINT_NAME,
      new Master(rpcEnv, rpcEnv.address, webUiPort, securityMgr, conf))
    //master终端点send a message to the corresponding [[RpcEndpoint]],这个RpcEndpoint就是Master
    val portsResponse = masterEndpoint.askSync[BoundPortsResponse](BoundPortsRequest)
    (rpcEnv, portsResponse.webUIPort, portsResponse.restPort)
  }

创建消息通信框架使用的RpcEnv,终端点MasterEndpoint
之后Master回再receiveAndReply方法进行回复

override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
    case RequestSubmitDriver(description) =>
      if (state != RecoveryState.ALIVE) {
        val msg = s"${Utils.BACKUP_STANDALONE_MASTER_PREFIX}: $state. " +
          "Can only accept driver submissions in ALIVE state."
        context.reply(SubmitDriverResponse(self, false, None, msg))
      } else {
        logInfo("Driver submitted " + description.command.mainClass)
        val driver = createDriver(description)
        persistenceEngine.addDriver(driver)
        waitingDrivers += driver
        drivers.add(driver)
        schedule()

        // TODO: It might be good to instead have the submission client poll the master to determine
        //       the current status of the driver. For now it's simply "fire and forget".

        context.reply(SubmitDriverResponse(self, true, Some(driver.id),
          s"Driver successfully submitted as ${driver.id}"))
      }

    case RequestKillDriver(driverId) =>
      if (state != RecoveryState.ALIVE) {
        val msg = s"${Utils.BACKUP_STANDALONE_MASTER_PREFIX}: $state. " +
          s"Can only kill drivers in ALIVE state."
        context.reply(KillDriverResponse(self, driverId, success = false, msg))
      } else {
        logInfo("Asked to kill driver " + driverId)
        val driver = drivers.find(_.id == driverId)
        driver match {
          case Some(d) =>
            if (waitingDrivers.contains(d)) {
              waitingDrivers -= d
              self.send(DriverStateChanged(driverId, DriverState.KILLED, None))
            } else {
              // We just notify the worker to kill the driver here. The final bookkeeping occurs
              // on the return path when the worker submits a state change back to the master
              // to notify it that the driver was successfully killed.
              d.worker.foreach { w =>
                w.endpoint.send(KillDriver(driverId))
              }
            }
            // TODO: It would be nice for this to be a synchronous response
            val msg = s"Kill request for $driverId submitted"
            logInfo(msg)
            context.reply(KillDriverResponse(self, driverId, success = true, msg))
          case None =>
            val msg = s"Driver $driverId has already finished or does not exist"
            logWarning(msg)
            context.reply(KillDriverResponse(self, driverId, success = false, msg))
        }
      }

    case RequestDriverStatus(driverId) =>
      if (state != RecoveryState.ALIVE) {
        val msg = s"${Utils.BACKUP_STANDALONE_MASTER_PREFIX}: $state. " +
          "Can only request driver status in ALIVE state."
        context.reply(
          DriverStatusResponse(found = false, None, None, None, Some(new Exception(msg))))
      } else {
        (drivers ++ completedDrivers).find(_.id == driverId) match {
          case Some(driver) =>
            context.reply(DriverStatusResponse(found = true, Some(driver.state),
              driver.worker.map(_.id), driver.worker.map(_.hostPort), driver.exception))
          case None =>
            context.reply(DriverStatusResponse(found = false, None, None, None, None))
        }
      }

    case RequestMasterState =>
      context.reply(MasterStateResponse(
        address.host, address.port, restServerBoundPort,
        workers.toArray, apps.toArray, completedApps.toArray,
        drivers.toArray, completedDrivers.toArray, state))

    case BoundPortsRequest =>
      context.reply(BoundPortsResponse(address.port, webUi.boundPort, restServerBoundPort))

    case RequestExecutors(appId, requestedTotal) =>
      context.reply(handleRequestExecutors(appId, requestedTotal))

    case KillExecutors(appId, executorIds) =>
      val formattedExecutorIds = formatExecutorIds(executorIds)
      context.reply(handleKillExecutors(appId, formattedExecutorIds))
  }

Worker启动与Master类似

 def main(argStrings: Array[String]) {
    Thread.setDefaultUncaughtExceptionHandler(new SparkUncaughtExceptionHandler(
      exitOnUncaughtException = false))
    Utils.initDaemon(log)
    val conf = new SparkConf
    val args = new WorkerArguments(argStrings, conf)
    val rpcEnv = startRpcEnvAndEndpoint(args.host, args.port, args.webUiPort, args.cores,
      args.memory, args.masters, args.workDir, conf = conf)
    // With external shuffle service enabled, if we request to launch multiple workers on one host,
    // we can only successfully launch the first worker and the rest fails, because with the port
    // bound, we may launch no more than one external shuffle service on each host.
    // When this happens, we should give explicit reason of failure instead of fail silently. For
    // more detail see SPARK-20989.
    val externalShuffleServiceEnabled = conf.getBoolean("spark.shuffle.service.enabled", false)
    val sparkWorkerInstances = scala.sys.env.getOrElse("SPARK_WORKER_INSTANCES", "1").toInt
    require(externalShuffleServiceEnabled == false || sparkWorkerInstances <= 1,
      "Starting multiple workers on one host is failed because we may launch no more than one " +
        "external shuffle service on each host, please set spark.shuffle.service.enabled to " +
        "false or set SPARK_WORKER_INSTANCES to 1 to resolve the conflict.")
    rpcEnv.awaitTermination()
  }

  def startRpcEnvAndEndpoint(
      host: String,
      port: Int,
      webUiPort: Int,
      cores: Int,
      memory: Int,
      masterUrls: Array[String],
      workDir: String,
      workerNumber: Option[Int] = None,
      conf: SparkConf = new SparkConf): RpcEnv = {

    // The LocalSparkCluster runs multiple local sparkWorkerX RPC Environments
    val systemName = SYSTEM_NAME + workerNumber.map(_.toString).getOrElse("")
    val securityMgr = new SecurityManager(conf)
    val rpcEnv = RpcEnv.create(systemName, host, port, conf, securityMgr)
    val masterAddresses = masterUrls.map(RpcAddress.fromSparkURL(_))
    rpcEnv.setupEndpoint(ENDPOINT_NAME, new Worker(rpcEnv, webUiPort, cores, memory,
      masterAddresses, ENDPOINT_NAME, workDir, conf, securityMgr))
    rpcEnv
  }

1.worker节点向master节点发送注册消息。
2.注册成功后,返回成功消息或者失败消息。
3.worker定时向master发送心跳。
如图:


Spark启动消息通信

a)、当master启动后,随之启动各worker,worker启动时会创建通信环境RpcEnv和终端点Endpoint,并向Master发送注册Worker的消息RegisterWorker。

由于Worker可能需要注册多个Master(HA),在Worker类的tryRegisterAllMasters方法中创建注册线程池。把需要注册的请求,放入线程池中,然后通过启动线程池来注册。

b)、注册过程:

获取master终端引用,调用registerWithMaster

//通过构造方法Worker调用onStart
override def onStart() {
    assert(!registered)
    logInfo("Starting Spark worker %s:%d with %d cores, %s RAM".format(
      host, port, cores, Utils.megabytesToString(memory)))
    logInfo(s"Running Spark version ${org.apache.spark.SPARK_VERSION}")
    logInfo("Spark home: " + sparkHome)
    createWorkDir()
    shuffleService.startIfEnabled()
    webUi = new WorkerWebUI(this, workDir, webUiPort)
    webUi.bind()

    workerWebUiUrl = s"http://$publicAddress:${webUi.boundPort}"
    registerWithMaster()  //向Master进行注册Worker

    metricsSystem.registerSource(workerSource)
    metricsSystem.start()
    // Attach the worker metrics servlet handler to the web ui after the metrics system is started.
    metricsSystem.getServletHandlers.foreach(webUi.attachHandler)
  }

//Spark使用ZK来实现Master的HA,首先会创建一个线程池 registerMasterThreadPool,注册一个阻塞的Action,这个线城池要实现向所有master进行注册。
private def tryRegisterAllMasters(): Array[JFuture[_]] = {
      masterRpcAddresses.map { masterAddress =>
        registerMasterThreadPool.submit(new Runnable {
          override def run(): Unit = {
            try {
              logInfo("Connecting to master " + masterAddress + "...")
              val masterEndpoint = rpcEnv.setupEndpointRef(masterAddress, Master.ENDPOINT_NAME)
 //发送注册RegisterWorker             sendRegisterMessageToMaster(masterEndpoint)
            } catch {
              case ie: InterruptedException => // Cancelled
              case NonFatal(e) => logWarning(s"Failed to connect to master $masterAddress", e)
            }
          }
        })
      }
  }
//Ask方法定义为:
/**
   * Send a message to the corresponding [[RpcEndpoint.receiveAndReply)]] and return a [[Future]] to
   * receive the reply within a default timeout.
   *
   * This method only sends the message once and never retries.
   */
  def ask[T: ClassTag](message: Any): Future[T] = ask(message, defaultAskTimeout)
private def registerWithMaster(masterEndpoint: RpcEndpointRef): Unit = {
    masterEndpoint.ask[RegisterWorkerResponse](RegisterWorker(
      workerId, host, port, self, cores, memory, workerWebUiUrl))
      .onComplete {
        // This is a very fast action so we can use "ThreadUtils.sameThread"
        case Success(msg) =>
          Utils.tryLogNonFatalError {
            handleRegisterResponse(msg)
          }
        case Failure(e) =>
          logError(s"Cannot register with master: ${masterEndpoint.address}", e)
          System.exit(1)
      }(ThreadUtils.sameThread)
  }

c) Master收到消息后,需要对Worker发送的信息进行验证、记录。如果注册成功,则发送RegisteredWorker消息给对应的Worker,告诉Worker已经完成注册,随之进程步骤3,即Worker定期发送心跳信息给Master;如果注册失败,则会发送RegisterWorkerFailed消息,Worker打印出错误日志并结束worker启动。

d) 在Master中,Master接收到Worker注册信息后,先判断Master当前状态是处于standby状态,如果是则忽略该消息,如果在注册列表中发现了该worker的编号,则发送注册失败的消息。判断完毕后,使用registerWorker方法把该Worker加入到列表中,用户集群进行处理任务时进行调度。Master.receiveAndReply方法中注册Worer代码:

此处Master会处理workerid, workerhost, workerPort, workRef终端点引用,worker的cores, memory,worker的workerWebUiUrl地址
里面的逻辑大概是首先判断Master是不是standBy,是的话返回MasterInStandby,在检查idToWorker是否注册过该Worker,不能重复注册。如果以上两种情况均未发生,则会去注册worker, 创建WorkerInfo封住该Worker的具体信息,然后调用registerWorker(worker)方法:

 case RegisterWorker(
      id, workerHost, workerPort, workerRef, cores, memory, workerWebUiUrl, masterAddress) =>
      logInfo("Registering worker %s:%d with %d cores, %s RAM".format(
        workerHost, workerPort, cores, Utils.megabytesToString(memory)))
      if (state == RecoveryState.STANDBY) {
        workerRef.send(MasterInStandby)
      } else if (idToWorker.contains(id)) {
        workerRef.send(RegisterWorkerFailed("Duplicate worker ID")) //已经存在
      } else {
        val worker = new WorkerInfo(id, workerHost, workerPort, cores, memory,
          workerRef, workerWebUiUrl)
        if (registerWorker(worker)) {
          persistenceEngine.addWorker(worker) //注册worker
          workerRef.send(RegisteredWorker(self, masterWebUiUrl, masterAddress))
          schedule()
        } else {
          val workerAddress = worker.endpoint.address
          logWarning("Worker registration failed. Attempted to re-register worker at same " +
            "address: " + workerAddress)
          workerRef.send(RegisterWorkerFailed("Attempted to re-register worker at same address: "
            + workerAddress))
        }
      }

此处Master会处理workerid, workerhost, workerPort, workRef终端点引用,worker的cores, memory,worker的workerWebUiUrl地址
里面的逻辑大概是首先判断Master是不是standBy,是的话返回MasterInStandby,在检查idToWorker是否注册过该Worker,不能重复注册。如果以上两种情况均未发生,则会去注册worker, 创建WorkerInfo封住该Worker的具体信息,然后调用registerWorker(worker)方法:

private def registerWorker(worker: WorkerInfo): Boolean = {
    // There may be one or more refs to dead workers on this same node (w/ different ID's),
    // remove them.
    workers.filter { w =>
      (w.host == worker.host && w.port == worker.port) && (w.state == WorkerState.DEAD)
    }.foreach { w =>
      workers -= w
    }

    val workerAddress = worker.endpoint.address
    if (addressToWorker.contains(workerAddress)) {
      val oldWorker = addressToWorker(workerAddress)
      if (oldWorker.state == WorkerState.UNKNOWN) {
        // A worker registering from UNKNOWN implies that the worker was restarted during recovery.
        // The old worker must thus be dead, so we will remove it and accept the new worker.
        removeWorker(oldWorker)
      } else {
        logInfo("Attempted to re-register worker at same address: " + workerAddress)
        return false
      }
    }

    workers += worker
    idToWorker(worker.id) = worker
    addressToWorker(workerAddress) = worker
    true
  }

 .onComplete {
        // This is a very fast action so we can use "ThreadUtils.sameThread"
        case Success(msg) =>
          Utils.tryLogNonFatalError {
            handleRegisterResponse(msg)
          }
        case Failure(e) =>
          logError(s"Cannot register with master: ${masterEndpoint.address}", e)
          System.exit(1)

e) 当worker接收到注册成功后,会定时发送heartbeat给Master,以便Master了解Worker的实时状态。间隔时间可以设置。

Worker收到注册成功后会先设置registered = true表明注册成功,然后更新Master信息, 记录此Worker现在注册给哪个Master,之后就会启动定时任务发送心跳, 同时Worker还会向Master汇报Worker中Executor的最新状态如每个Executor的对应处理的appid, executor本身id,executer使用的cores, executor的状态以及Driver的信息.
val execs = executors.values.map { e =>
          new ExecutorDescription(e.appId, e.execId, e.cores, e.state)
        }
masterRef.send(WorkerLatestState(workerId, execs.toList, drivers.keys.toSeq))

private val HEARTBEAT_MILLIS = conf.getLong("spark.worker.timeout", 60) * 1000 / 4

当 Worker获取到注册成功消息后,先记录日志并更新Master信息,然后启动定时调度进程发送心跳信息,该调度进程时间间隔为上面所所定义的HEARTBEAT_MILLIS 值。
Master在收到Worker注册请求,返回注册成功之后还会执行一步骤:
schedule()

/**
   * Schedule the currently available resources among waiting apps. This method will be called
   * every time a new app joins or resource availability changes.
   */
  private def schedule(): Unit = {
    if (state != RecoveryState.ALIVE) {
      return
    }
    // Drivers take strict precedence over executors
    val shuffledAliveWorkers = Random.shuffle(workers.toSeq.filter(_.state == WorkerState.ALIVE))
    val numWorkersAlive = shuffledAliveWorkers.size
    var curPos = 0
    for (driver <- waitingDrivers.toList) { // iterate over a copy of waitingDrivers
      // We assign workers to each waiting driver in a round-robin fashion. For each driver, we
      // start from the last worker that was assigned a driver, and continue onwards until we have
      // explored all alive workers.
      var launched = false
      var numWorkersVisited = 0
      while (numWorkersVisited < numWorkersAlive && !launched) {
        val worker = shuffledAliveWorkers(curPos)
        numWorkersVisited += 1
        if (worker.memoryFree >= driver.desc.mem && worker.coresFree >= driver.desc.cores) {
          launchDriver(worker, driver)
          waitingDrivers -= driver
          launched = true
        }
        curPos = (curPos + 1) % numWorkersAlive
      }
    }
    startExecutorsOnWorkers()
  }

意思是当新加入了Worker节点,获取所有可用的Alive的Worker, 查看是否有waiting的App没有分到资源的, 有的话遍历这个waitingDrivers(对应wainting状态的APP), 根据内存和核数是否满足if (worker.memoryFree >= driver.desc.mem && worker.coresFree >= driver.desc.cores) 来判断是否launch driver, 然后就调用startExecutorsOnWorkers()来启动Worker的Executors

Spark运行时通信

driver提交程序时,sc会向Master发送注册应用消息。Master会为之注册Executor,Executor发送注册成功消息,当RDD出发computing时,DAGScheduler进行划分Stage,并将Stage转化为Taskset,接着由TaskScheduler向注册的Executor发送执行消息,Executor接受到消息后启动运行。最后当所有任务运行时,由Driver处理结果并回收资源。如图:


运行时通信.png

1)执行程序main方法,启动SparkContext,在初始化时,先实例化StandaloneScheduleBackend对象继承CoarseGrainedSchedulerBackend会先实例化父类,在实例化该对象时候start过程继承DriverEndpoint和创建AppClient的ClientEndpoint实际上是两个终端点,然后再初始化TaskSchedulerImpl,调用backend.start

CoarseGrainedSchedulerBackend的start方法:

override def start() {
    val properties = new ArrayBuffer[(String, String)]
    for ((key, value) <- scheduler.sc.conf.getAll) {
      if (key.startsWith("spark.")) {
        properties += ((key, value))
      }
    }

    // TODO (prashant) send conf instead of properties
    driverEndpoint = createDriverEndpointRef(properties)
  }

  protected def createDriverEndpointRef(
      properties: ArrayBuffer[(String, String)]): RpcEndpointRef = {
    rpcEnv.setupEndpoint(ENDPOINT_NAME, createDriverEndpoint(properties))
  }

  protected def createDriverEndpoint(properties: Seq[(String, String)]): DriverEndpoint = {
    new DriverEndpoint(rpcEnv, properties)
  }

创建了StandaloneAppClient
(2)在StandaloneAppClient通过tryResisterAllMasters来实现Application向Master的注册
(3)当Master收到注册请求之后进行处理, 注册完毕之后会发送注册成功消息给StandaloneApplClient, 然后调用startExecutorsOnWorkers方法运行应用。
(4)Executor注册过程
a)调用startExecutorsOnWorkers会分配资源来运行应用程序, 调用allcateWorkerResourceToExecutors实现在Worker中启动Executor,allcateWorkerResourceToExecutors里面有个lanchExecutor方法,这里面会调用send(LaunchTask)给Worker, Worker收到后会实例化ExecutorRunner对象,在ExecutorRunner创建进程生成器ProcessBuilder,然后此生成器根据ApplicationInfo中的command创建CoarseGrainedExecutorBackend对象,也就是Executor运行的容器, 最后Worker向Master发送ExecutorStateChanged通知Executor容器创建完毕,
b)进程生成器创建CoarseGrainedExecutorBackend对象时,调用了start方法,其半生对象会注册Executor终端点,会触发onStart方法,会发送注册Executor消息RegisterExecutor到Driverpoint,如果注册成功Driverpoint会返回RegisteredExecutor消息给ExecutorEndppoint。当ExecutorEndppoint实际上是CoarseGrainedExecutorBackend收到注册成功, 则会创建Executor对象。
c)DriverEndpoint会创建一个守护线程,监听是否有taskSets过来

private val reviveThread =
      ThreadUtils.newDaemonSingleThreadScheduledExecutor("driver-revive-thread")

    override def onStart() {
      // Periodically revive offers to allow delay scheduling to work
      val reviveIntervalMs = conf.getTimeAsMs("spark.scheduler.revive.interval", "1s")

      reviveThread.scheduleAtFixedRate(new Runnable {
        override def run(): Unit = Utils.tryLogNonFatalError {
          Option(self).foreach(_.send(ReviveOffers))
        }
      }, 0, reviveIntervalMs, TimeUnit.MILLISECONDS)
    }

调用makeoffers

// Make fake resource offers on all executors
    private def makeOffers() {
      // Filter out executors under killing
      val activeExecutors = executorDataMap.filterKeys(executorIsAlive)
      val workOffers = activeExecutors.map { case (id, executorData) =>
        new WorkerOffer(id, executorData.executorHost, executorData.freeCores)
      }.toSeq
      launchTasks(scheduler.resourceOffers(workOffers))
    }
executorData.executorEndpoint.send(LaunchTask(new SerializableBuffer(serializedTask)))
def launchTask(
      context: ExecutorBackend,
      taskId: Long,
      attemptNumber: Int,
      taskName: String,
      serializedTask: ByteBuffer): Unit = {
    val tr = new TaskRunner(context, taskId = taskId, attemptNumber = attemptNumber, taskName,
      serializedTask)
    runningTasks.put(taskId, tr)
    threadPool.execute(tr)
  }

TaskRunner的run方法体内就会执行Task, 当执行完毕时会向Driver汇报此Task在Executor上执行完毕了。

execBackend.statusUpdate(taskId, TaskState.FINISHED, serializedResult)

------------------------------------------------------------------------------------
override def statusUpdate(taskId: Long, state: TaskState, data: ByteBuffer) {
    val msg = StatusUpdate(executorId, taskId, state, data)
    driver match {
      case Some(driverRef) => driverRef.send(msg)
      case None => logWarning(s"Drop $msg because has not yet connected to driver")
    }
  }

相关文章

网友评论

      本文标题:Spark学习笔记(2)通信分析

      本文链接:https://www.haomeiwen.com/subject/tlwxsqtx.html