美文网首页首页投稿(暂停使用,暂停投稿)spark
spark源码分析Master与Worker启动流程篇

spark源码分析Master与Worker启动流程篇

作者: 张鱼猫 | 来源:发表于2016-04-28 21:35 被阅读1387次

    spark通信流程

    概述

    spark作为一套高效的分布式运算框架,但是想要更深入的学习它,就要通过分析spark的源码,不但可以更好的帮助理解spark的工作过程,还可以提高对集群的排错能力,本文主要关注的是Spark的Master的启动流程与Worker启动流程。

    现在Spark最新版本为1.6,但是代码的逻辑不够清晰,不便于理解,这里以1.3为准

    Master启动

    我们启动一个Master是通过Shell命令启动了一个脚本start-master.sh开始的,这个脚本的启动流程如下

    start-master.sh  -> spark-daemon.sh start org.apache.spark.deploy.master.Master
    

    我们可以看到脚本首先启动了一个org.apache.spark.deploy.master.Master类,启动时会传入一些参数,比如cpu的执行核数,内存大小,app的main方法等

    查看Master类的main方法

    private[spark] object Master extends Logging {
      val systemName = "sparkMaster"
      private val actorName = "Master"
    
      //master启动的入口
      def main(argStrings: Array[String]) {
        SignalLogger.register(log)
        //创建SparkConf
        val conf = new SparkConf
        //保存参数到SparkConf
        val args = new MasterArguments(argStrings, conf)
        //创建ActorSystem和Actor
        val (actorSystem, _, _, _) = startSystemAndActor(args.host, args.port, args.webUiPort, conf)
        //等待结束
        actorSystem.awaitTermination()
      }
    

    这里主要看startSystemAndActor方法

      /**
       * Start the Master and return a four tuple of:
       *   (1) The Master actor system
       *   (2) The bound port
       *   (3) The web UI bound port
       *   (4) The REST server bound port, if any
       */
      def startSystemAndActor(
          host: String,
          port: Int,
          webUiPort: Int,
          conf: SparkConf): (ActorSystem, Int, Int, Option[Int]) = {
        val securityMgr = new SecurityManager(conf)
    
        //利用AkkaUtils创建ActorSystem
        val (actorSystem, boundPort) = AkkaUtils.createActorSystem(systemName, host, port, conf = conf,
          securityManager = securityMgr)
       
        val actor = actorSystem.actorOf(
          Props(classOf[Master], host, boundPort, webUiPort, securityMgr, conf), actorName)
       ....
      }
    }
    

    spark底层通信使用的是Akka
    通过ActorSystem创建Actor -> actorSystem.actorOf, 就会执行Master的构造方法->然后执行Actor生命周期方法
    执行Master的构造方法初始化一些变量

     private[spark] class Master(
        host: String,
        port: Int,
        webUiPort: Int,
        val securityMgr: SecurityManager,
        val conf: SparkConf)
      extends Actor with ActorLogReceive with Logging with LeaderElectable {
      //主构造器
    
      //启用定期器功能
      import context.dispatcher   // to use Akka's scheduler.schedule()
    
      val hadoopConf = SparkHadoopUtil.get.newConfiguration(conf)
    
      def createDateFormat = new SimpleDateFormat("yyyyMMddHHmmss")  // For application IDs
      //woker超时时间
      val WORKER_TIMEOUT = conf.getLong("spark.worker.timeout", 60) * 1000
      val RETAINED_APPLICATIONS = conf.getInt("spark.deploy.retainedApplications", 200)
      val RETAINED_DRIVERS = conf.getInt("spark.deploy.retainedDrivers", 200)
      val REAPER_ITERATIONS = conf.getInt("spark.dead.worker.persistence", 15)
      val RECOVERY_MODE = conf.get("spark.deploy.recoveryMode", "NONE")
    
      //一个HashSet用于保存WorkerInfo
      val workers = new HashSet[WorkerInfo]
      //一个HashMap用保存workid -> WorkerInfo
      val idToWorker = new HashMap[String, WorkerInfo]
      val addressToWorker = new HashMap[Address, WorkerInfo]
    
      //一个HashSet用于保存客户端(SparkSubmit)提交的任务
      val apps = new HashSet[ApplicationInfo]
      //一个HashMap Appid-》 ApplicationInfo
      val idToApp = new HashMap[String, ApplicationInfo]
      val actorToApp = new HashMap[ActorRef, ApplicationInfo]
      val addressToApp = new HashMap[Address, ApplicationInfo]
      //等待调度的App
      val waitingApps = new ArrayBuffer[ApplicationInfo]
      val completedApps = new ArrayBuffer[ApplicationInfo]
      var nextAppNumber = 0
      val appIdToUI = new HashMap[String, SparkUI]
    
      //保存DriverInfo
      val drivers = new HashSet[DriverInfo]
      val completedDrivers = new ArrayBuffer[DriverInfo]
      val waitingDrivers = new ArrayBuffer[DriverInfo] // Drivers currently spooled for scheduling
    
    

    主构造器执行完就会执行preStart --》执行完receive方法

      //启动定时器,进行定时检查超时的worker
      //重点看一下CheckForWorkerTimeOut
      context.system.scheduler.schedule(0 millis, WORKER_TIMEOUT millis, self, CheckForWorkerTimeOut)
    

    preStart方法里创建了一个定时器,定时检查Woker的超时时间 val WORKER_TIMEOUT = conf.getLong("spark.worker.timeout", 60) * 1000 默认为60秒

    到此Master的初始化的主要过程到我们已经看到了,主要就是构造一个Master的Actor进行等待消息,并初始化了一堆集合来保存Worker信息,和一个定时器来检查Worker的超时

    Master启动时序图

    Woker的启动

    通过Shell脚本执行salves.sh -> 通过读取slaves 通过ssh的方式启动远端的worker
    spark-daemon.sh start org.apache.spark.deploy.worker.Worker

    脚本会启动org.apache.spark.deploy.worker.Worker

    看Worker源码

    private[spark] object Worker extends Logging {
      //Worker启动的入口
      def main(argStrings: Array[String]) {
        SignalLogger.register(log)
        val conf = new SparkConf
        val args = new WorkerArguments(argStrings, conf)
        //新创ActorSystem和Actor
        val (actorSystem, _) = startSystemAndActor(args.host, args.port, args.webUiPort, args.cores,
          args.memory, args.masters, args.workDir)
        actorSystem.awaitTermination()
      }
    

    这里最重要的是Woker的startSystemAndActor

      def startSystemAndActor(
          host: String,
          port: Int,
          webUiPort: Int,
          cores: Int,
          memory: Int,
          masterUrls: Array[String],
          workDir: String,
          workerNumber: Option[Int] = None,
          conf: SparkConf = new SparkConf): (ActorSystem, Int) = {
    
        // The LocalSparkCluster runs multiple local sparkWorkerX actor systems
        val systemName = "sparkWorker" + workerNumber.map(_.toString).getOrElse("")
        val actorName = "Worker"
        val securityMgr = new SecurityManager(conf)
        //通过AkkaUtils ActorSystem
        val (actorSystem, boundPort) = AkkaUtils.createActorSystem(systemName, host, port,
          conf = conf, securityManager = securityMgr)
        val masterAkkaUrls = masterUrls.map(Master.toAkkaUrl(_, AkkaUtils.protocol(actorSystem)))
        //通过actorSystem.actorOf创建Actor   Worker-》执行构造器 -》 preStart -》 receice
        actorSystem.actorOf(Props(classOf[Worker], host, boundPort, webUiPort, cores, memory,
          masterAkkaUrls, systemName, actorName,  workDir, conf, securityMgr), name = actorName)
        (actorSystem, boundPort)
      }
    

    这里Worker同样的构造了一个属于Worker的Actor对象,到此Worker的启动初始化完成

    Worker与Master通信

    根据Actor生命周期接着Worker的preStart方法被调用

      override def preStart() {
        assert(!registered)
        logInfo("Starting Spark worker %s:%d with %d cores, %s RAM".format(
          host, port, cores, Utils.megabytesToString(memory)))
        logInfo(s"Running Spark version ${org.apache.spark.SPARK_VERSION}")
        logInfo("Spark home: " + sparkHome)
        createWorkDir()
        context.system.eventStream.subscribe(self, classOf[RemotingLifecycleEvent])
        shuffleService.startIfEnabled()
        webUi = new WorkerWebUI(this, workDir, webUiPort)
        webUi.bind()
    
        //Worker向Master注册
        registerWithMaster()
        ....
      }
    

    这里调用了一个registerWithMaster方法,开始向Master注册

     def registerWithMaster() {
        // DisassociatedEvent may be triggered multiple times, so don't attempt registration
        // if there are outstanding registration attempts scheduled.
        registrationRetryTimer match {
          case None =>
            registered = false
            //开始注册
            tryRegisterAllMasters()
            ....
        }
      }
    

    registerWithMaster里通过匹配调用了tryRegisterAllMasters方法
    ,接下来看

      private def tryRegisterAllMasters() {
        //遍历master的地址
        for (masterAkkaUrl <- masterAkkaUrls) {
          logInfo("Connecting to master " + masterAkkaUrl + "...")
          //Worker跟Mater建立连接
          val actor = context.actorSelection(masterAkkaUrl)
          //向Master发送注册信息
          actor ! RegisterWorker(workerId, host, port, cores, memory, webUi.boundPort, publicAddress)
        }
      }
    

    通过masterAkkaUrl和Master建立连接后
    actor ! RegisterWorker(workerId, host, port, cores, memory, webUi.boundPort, publicAddress)Worker向Master发送了一个消息,带去一些参数,id,主机,端口,cpu核数,内存等待

    override def receiveWithLogging = {
        ......
      
        //接受来自Worker的注册信息
        case RegisterWorker(id, workerHost, workerPort, cores, memory, workerUiPort, publicAddress) =>
        {
          logInfo("Registering worker %s:%d with %d cores, %s RAM".format(
            workerHost, workerPort, cores, Utils.megabytesToString(memory)))
          if (state == RecoveryState.STANDBY) {
            // ignore, don't send response
            //判断这个worker是否已经注册过
          } else if (idToWorker.contains(id)) {
            //如果注册过,告诉worker注册失败
            sender ! RegisterWorkerFailed("Duplicate worker ID")
          } else {
            //没有注册过,把来自Worker的注册信息封装到WorkerInfo当中
            val worker = new WorkerInfo(id, workerHost, workerPort, cores, memory,
              sender, workerUiPort, publicAddress)
            if (registerWorker(worker)) {
              //用持久化引擎记录Worker的信息
              persistenceEngine.addWorker(worker)
              //向Worker反馈信息,告诉Worker注册成功
              sender ! RegisteredWorker(masterUrl, masterWebUiUrl)
        
              schedule()
            } else {
              val workerAddress = worker.actor.path.address
              logWarning("Worker registration failed. Attempted to re-register worker at same " +
                "address: " + workerAddress)
              sender ! RegisterWorkerFailed("Attempted to re-register worker at same address: "
                + workerAddress)
            }
          }
        }
    

    这里是最主要的内容;
    receiveWithLogging里会轮询到Worker发送的消息,
    Master收到消息后将参数封装成WorkInfo对象添加到集合中,并加入到持久化引擎中
    sender ! RegisteredWorker(masterUrl, masterWebUiUrl)向Worker发送一个消息反馈

    接下来看Worker的receiveWithLogging

    override def receiveWithLogging = {
        
        case RegisteredWorker(masterUrl, masterWebUiUrl) =>
          logInfo("Successfully registered with master " + masterUrl)
          registered = true
          changeMaster(masterUrl, masterWebUiUrl)
          //启动定时器,定时发送心跳Heartbeat
          context.system.scheduler.schedule(0 millis, HEARTBEAT_MILLIS millis, self, SendHeartbeat)
          if (CLEANUP_ENABLED) {
            logInfo(s"Worker cleanup enabled; old application directories will be deleted in: $workDir")
            context.system.scheduler.schedule(CLEANUP_INTERVAL_MILLIS millis,
              CLEANUP_INTERVAL_MILLIS millis, self, WorkDirCleanup)
          }
    

    worker接受来自Master的注册成功的反馈信息,启动定时器,定时发送心跳Heartbeat

        case SendHeartbeat =>
          //worker发送心跳的目的就是为了报活
          if (connected) { master ! Heartbeat(workerId) }
    

    Master端的receiveWithLogging收到心跳消息

      override def receiveWithLogging = {
            ....
        case Heartbeat(workerId) => {
          idToWorker.get(workerId) match {
            case Some(workerInfo) =>
              //更新最后一次心跳时间
              workerInfo.lastHeartbeat = System.currentTimeMillis()
              .....
          }
        }
     }
    

    记录并更新workerInfo.lastHeartbeat = System.currentTimeMillis()最后一次心跳时间

    Master的定时任务会不断的发送一个CheckForWorkerTimeOut内部消息不断的轮询集合里的Worker信息,如果超过60秒就将Worker信息移除

      //检查超时的Worker
        case CheckForWorkerTimeOut => {
          timeOutDeadWorkers()
        }
    

    timeOutDeadWorkers方法

      def timeOutDeadWorkers() {
        // Copy the workers into an array so we don't modify the hashset while iterating through it
        val currentTime = System.currentTimeMillis()
        val toRemove = workers.filter(_.lastHeartbeat < currentTime - WORKER_TIMEOUT).toArray
        for (worker <- toRemove) {
          if (worker.state != WorkerState.DEAD) {
            logWarning("Removing %s because we got no heartbeat in %d seconds".format(
              worker.id, WORKER_TIMEOUT/1000))
            removeWorker(worker)
          } else {
            if (worker.lastHeartbeat < currentTime - ((REAPER_ITERATIONS + 1) * WORKER_TIMEOUT)) {
              workers -= worker // we've seen this DEAD worker in the UI, etc. for long enough; cull it
            }
          }
        }
      }
    

    如果 (最后一次心跳时间<当前时间-超时时间)则判断为Worker超时,
    将集合里的信息移除。
    当下一次收到心跳信息时,如果是已注册过的,workerId不为空,但是WorkerInfo已被移除的条件,就会sender ! ReconnectWorker(masterUrl)发送一个重新注册的消息

     case None =>
              if (workers.map(_.id).contains(workerId)) {
                logWarning(s"Got heartbeat from unregistered worker $workerId." +
                  " Asking it to re-register.")
                //发送重新注册的消息
                sender ! ReconnectWorker(masterUrl)
              } else {
                logWarning(s"Got heartbeat from unregistered worker $workerId." +
                  " This worker was never registered, so ignoring the heartbeat.")
              }
    

    Worker与Master时序图


    Master与Worker启动以后的大致的通信流程到此,接下来就是如何启动集群上的Executor 进程计算任务了。

    相关文章

      网友评论

        本文标题:spark源码分析Master与Worker启动流程篇

        本文链接:https://www.haomeiwen.com/subject/znuhrttx.html