本平台的文章更新会有延迟,大家可以关注微信公众号-顾林海,包括年底前会更新kotlin由浅入深系列教程,目前计划在微信公众号进行首发,如果大家想获取最新教程,请关注微信公众号,谢谢
在上一节介绍了缓存拦截器CacheInterceptor的缓存机制,内部采用DiskLruCache来缓存数据,本节介绍剩下的两个拦截器,分别是ConnectInterceptor和CallServerInterceptor拦截器。
ConnectInterceptor拦截器
ConnectInterceptor是网络连接拦截器,我们知道在OkHttp当中真正的网络请求都是通过拦截器链来实现的,通过依次执行这个拦截器链上不同功能的拦截器来完成数据的响应,ConnectInterceptor的作用就是打开与服务器之间的连接,正式开启OkHttp的网络请求。
走进ConnectInterceptor的intercept方法:
@Override public Response intercept(Interceptor.Chain chain) throws IOException {
RealInterceptorChain realChain = (RealInterceptorChain) chain;
Request request = realChain.request();
//标记1
StreamAllocation streamAllocation = realChain.streamAllocation();
...
}
在标记1处可以看到从上一个拦截器中获取StreamAllocation对象,在讲解第一个拦截器RetryAndFollowUpInterceptor重试重定向的时候已经介绍过StreamAllocation,在RetryAndFollowUpInterceptor中只是创建了这个对象并没有使用,真正使用它的是在ConnectInterceptor中,StreamAllocation是用来建立执行HTTP请求所需要的网络组件,既然我们拿到了StreamAllocation,接下来看这个StreamAllocation到底做了哪些操作。
@Override public Response intercept(Interceptor.Chain chain) throws IOException {
...
//标记1
StreamAllocation streamAllocation = realChain.streamAllocation();
..
//标记2
HttpCodec httpCodec = streamAllocation.newStream(client, chain, doExtensiveHealthChecks);
...
}
在标记2处通过StreamAllocation对象的newStream方法创建了一个HttpCodec对象,HttpCodec的作用是用来编码我们的Request以及解码我们的Response。
@Override public Response intercept(Interceptor.Chain chain) throws IOException {
...
//标记1
StreamAllocation streamAllocation = realChain.streamAllocation();
...
//标记2
HttpCodec httpCodec = streamAllocation.newStream(client, chain, doExtensiveHealthChecks);
//标记3
RealConnection connection = streamAllocation.connection();
...
}
在标记3处通过StreamAllocation对象的connection方法获取到RealConnection对象,这个RealConnection对象是用来进行实际的网络IO传输的。
@Override public Response intercept(Interceptor.Chain chain) throws IOException {
...
//标记1
StreamAllocation streamAllocation = realChain.streamAllocation();
...
//标记2
HttpCodec httpCodec = streamAllocation.newStream(client, chain, doExtensiveHealthChecks);
//标记3
RealConnection connection = streamAllocation.connection();
//标记4
return realChain.proceed(request, streamAllocation, httpCodec, connection);
}
标记4处是我们非常熟悉的代码了,继续调用拦截器链的下一个拦截器并将Request、StreamAllocation、HttpCodec以及RealConnection对象传递过去。
总结:
首先ConnectInterceptor拦截器从拦截器链获取到前面传递过来的StreamAllocation,接着执行StreamAllocation的newStream方法创建HttpCodec,HttpCodec对象是用于处理我们的Request和Response。
最后将刚才创建的用于网络IO的RealConnection对象,以及对于服务器交互最为关键的HttpCodec等对象传递给后面的拦截器。
从上面我们了解了ConnectInterceptor拦截器的intercept方法的整体流程,从前一个拦截器中获取StreamAllocation对象,通过StreamAllocation对象的newStream方法创建了一个HttpCodec对象,我们看看这个newStream方法具体做了哪些操作。
public HttpCodec newStream(
OkHttpClient client, Interceptor.Chain chain, boolean doExtensiveHealthChecks) {
...
try {
//标记1
RealConnection resultConnection = findHealthyConnection(connectTimeout, readTimeout,
writeTimeout, pingIntervalMillis, connectionRetryEnabled, doExtensiveHealthChecks);
HttpCodec resultCodec = resultConnection.newCodec(client, chain, this);
...
} catch (IOException e) {
throw new RouteException(e);
}
}
我们可以看到在标记1处创建了一个RealConnection对象,以及HttpCodec对象,这两个对象在上面已经介绍过了,RealConnection对象是用来进行实际的网络IO传输的,HttpCodec是用来编码我们的Request以及解码我们的Response。
通过findHealthyConnection方法生成一个RealConnection对象,来进行实际的网络连接。
findHealthyConnection方法:
private RealConnection findHealthyConnection(int connectTimeout, int readTimeout,
int writeTimeout, int pingIntervalMillis, boolean connectionRetryEnabled,
boolean doExtensiveHealthChecks) throws IOException {
while (true) {
RealConnection candidate = findConnection(connectTimeout, readTimeout, writeTimeout,
pingIntervalMillis, connectionRetryEnabled);
...
synchronized (connectionPool) {
if (candidate.successCount == 0) {
return candidate;
}
}
...
return candidate;
}
}
在方法中开启了while循环,内部的同步代码块中判断candidate的successCount如果等于0,说明整个网络连接结束并直接返回candidate,而这个candidate是通过同步代码块上面的findConnection方法获取的。
private RealConnection findHealthyConnection(int connectTimeout, int readTimeout,
int writeTimeout, int pingIntervalMillis, boolean connectionRetryEnabled,
boolean doExtensiveHealthChecks) throws IOException {
while (true) {
RealConnection candidate = findConnection(connectTimeout, readTimeout, writeTimeout,
pingIntervalMillis, connectionRetryEnabled);
synchronized (connectionPool) {
if (candidate.successCount == 0) {
return candidate;
}
}
//标记1
if (!candidate.isHealthy(doExtensiveHealthChecks)) {
noNewStreams();
continue;
}
return candidate;
}
}
往下看标记1,这边会判断这个连接是否健康(比如Socket没有关闭、或者它的输入输出流没有关闭等等),如果不健康就调用noNewStreams方法从连接池中取出并销毁,接着调用continue,继续循环调用findConnection方法获取RealConnection对象。
通过不停的循环调用findConnection方法来获取RealConnection对象,接着看这个findConnection方法做了哪些操作。
private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout,
int pingIntervalMillis, boolean connectionRetryEnabled) throws IOException {
...
RealConnection result = null;
Connection releasedConnection;
...
synchronized (connectionPool) {
...
//标记1
releasedConnection = this.connection;
...
if (this.connection != null) {
result = this.connection;
releasedConnection = null;
}
...
}
...
return result;
}
在findConnection方法的标记1处,尝试将connection赋值给releasedConnection,然后判断这个connection能不能复用,如果能复用,就将connection赋值给result,最后返回这个复用的连接。如果不能复用,那么result就为null,我们继续往下看。
private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout,
int pingIntervalMillis, boolean connectionRetryEnabled) throws IOException {
...
RealConnection result = null;
Connection releasedConnection;
...
synchronized (connectionPool) {
...
//标记1
...
//标记2
if (result == null) {
Internal.instance.get(connectionPool, address, this, null);
if (connection != null) {
foundPooledConnection = true;
result = connection;
} else {
selectedRoute = route;
}
}
...
}
...
return result;
}
如果result为null说明不能复用这个connection,那么就从连接池connectionPool中获取一个实际的RealConnection并赋值给connection,接着判断connection是否为空,不为空赋值给result。
private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout,
int pingIntervalMillis, boolean connectionRetryEnabled) throws IOException {
...
RealConnection result = null;
Connection releasedConnection;
...
synchronized (connectionPool) {
...
//标记1
...
//标记2
if (result == null) {
Internal.instance.get(connectionPool, address, this, null);
if (connection != null) {
foundPooledConnection = true;
result = connection;
} else {
selectedRoute = route;
}
}
...
}
...
//标记3
result.connect(connectTimeout, readTimeout, writeTimeout, pingIntervalMillis,
connectionRetryEnabled, call, eventListener);
...
return result;
}
标记3处,拿到我们的RealConnection对象result之后,调用它的connect方法来进行实际的网络连接。
private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout,
int pingIntervalMillis, boolean connectionRetryEnabled) throws IOException {
...
RealConnection result = null;
Connection releasedConnection;
...
synchronized (connectionPool) {
...
//标记1
...
//标记2
if (result == null) {
Internal.instance.get(connectionPool, address, this, null);
if (connection != null) {
foundPooledConnection = true;
result = connection;
} else {
selectedRoute = route;
}
}
...
}
...
//标记3
result.connect(connectTimeout, readTimeout, writeTimeout, pingIntervalMillis,
connectionRetryEnabled, call, eventListener);
...
//标记4
Internal.instance.put(connectionPool, result);
...
return result;
}
在标记4处,进行真正的网络连接后,将连接成功后的RealConnection对象result放入connectionPool连接池,方便后面复用。
上面我们介绍了StreamAllocation对象的newStream方法的具体操作,接下来看看ConnectInterceptor拦截器中一个很重要的概念-连接池。
不管HTTP协议是1.1还是2.0,它们的Keep-Alive机制,或者2.0的多路复用机制在实现上都需要引入一个连接池的概念,来维护整个网络连接。OkHttp中将客户端与服务端之间的链接抽象成一个Connection类,而RealConnection是它的实现类,为了管理所有的Connection,OkHttp提供了一个ConnectionPool这个类,它的主要作用就是在时间范围内复用Connection。
接下来主要介绍它的get和put方法。
@Nullable RealConnection get(Address address, StreamAllocation streamAllocation, Route route) {
assert (Thread.holdsLock(this));
for (RealConnection connection : connections) {
if (connection.isEligible(address, route)) {
streamAllocation.acquire(connection, true);
return connection;
}
}
return null;
}
在get方法中遍历连接池中的Connection,通过isEligible方法判断Connection是否可用,如果可以使用就会调用streamAllocation的acquire方法来获取所用的连接。
进入StreamAllocation的acquire方法:
public void acquire(RealConnection connection, boolean reportedAcquired) {
assert (Thread.holdsLock(connectionPool));
if (this.connection != null) throw new IllegalStateException();
//标记1
this.connection = connection;
this.reportedAcquired = reportedAcquired;
//标记2
connection.allocations.add(new StreamAllocationReference(this, callStackTrace));
}
标记1处,从连接池中获取的RealConnection对象赋值给StreamAllocation的成员变量connection。
标记2处,将StreamAllocation对象的弱引用添加到RealConnection的allocations集合中去,这样做的用处是通过allocations集合的大小来判断网络连接次数是否超过OkHttp指定的连接次数。
put方法:
void put(RealConnection connection) {
assert (Thread.holdsLock(this));
if (!cleanupRunning) {
cleanupRunning = true;
executor.execute(cleanupRunnable);
}
connections.add(connection);
}
put方法中在添加连接到连接池之前,会处理清理任务,做完清理任务后,将我们的connection添加到连接池中。
connection自动回收l利用了GC的回收算法,当StreamAllocation数量为0时,会被线程池检测到,然后进行回收,在ConnectionPool中有一个独立的线程,它会开启cleanupRunnable来清理连接池。
private final Runnable cleanupRunnable = new Runnable() {
@Override public void run() {
while (true) {
//标记1
long waitNanos = cleanup(System.nanoTime());
if (waitNanos == -1) return;
if (waitNanos > 0) {
long waitMillis = waitNanos / 1000000L;
waitNanos -= (waitMillis * 1000000L);
synchronized (ConnectionPool.this) {
try {
//标记2
ConnectionPool.this.wait(waitMillis, (int) waitNanos);
} catch (InterruptedException ignored) {
}
}
}
}
}
};
在run方法中是一个死循环,内部标记1处首次进行清理时,需要返回下次清理的间隔时间。标记2处调用了wait方法进行等待,等待释放锁和时间片,当等待时间过了之后会再次调用Runnable进行清理,同时返回下次要清理的间隔时间waitNanos。
标记2处的cleanup方法内部实现了具体的GC回收算法,该算法类似Java GC当中的标记清除算法;cleanup方法循环标记出最不活跃的connection,通过响应的判断来进行清理。
CallServerInterceptor拦截器
CallServerInterceptor拦截器主要作用是负责向服务器发起真正的网络请求,并获取返回结果。
CallServerInterceptor的intercept方法:
@Override public Response intercept(Chain chain) throws IOException {
RealInterceptorChain realChain = (RealInterceptorChain) chain;
HttpCodec httpCodec = realChain.httpStream();
StreamAllocation streamAllocation = realChain.streamAllocation();
RealConnection connection = (RealConnection) realChain.connection();
Request request = realChain.request();
...
}
intercept方法中先是获取五个对象,下面分别介绍这5个对象的含义。
-
RealInterceptorChain:拦截器链,真正进行请求的地方。
-
HttpCodec:在OkHttp中,它把所有的流对象都封装成了HttpCodec这个类,作用是编码Request,解码Response。
-
StreamAllocation:建立HTTP连接所需要的网络组件。
-
RealConnection:服务器与客户端的具体连接。
-
Request:网络请求。
@Override public Response intercept(Chain chain) throws IOException {
RealInterceptorChain realChain = (RealInterceptorChain) chain;
HttpCodec httpCodec = realChain.httpStream();
StreamAllocation streamAllocation = realChain.streamAllocation();
RealConnection connection = (RealConnection) realChain.connection();
Request request = realChain.request();
...
//标记1
httpCodec.finishRequest();
...
}
标记1处,调用httpCodec的finishRequest方法,表面网络请求的写入工作已经完成,具体网络请求的写入工作大家可以看源码,也就是标记1之上的代码。
网络请求的写入工作完成后,接下来就进行网络请求的读取工作。
@Override public Response intercept(Chain chain) throws IOException {
RealInterceptorChain realChain = (RealInterceptorChain) chain;
HttpCodec httpCodec = realChain.httpStream();
StreamAllocation streamAllocation = realChain.streamAllocation();
RealConnection connection = (RealConnection) realChain.connection();
Request request = realChain.request();
...
//网络请求一系列写入工作
...
//向socket当中写入请求的body信息
request.body().writeTo(bufferedRequestBody);
...
//标记1:写入结束
httpCodec.finishRequest();
...
if (responseBuilder == null) {
realChain.eventListener().responseHeadersStart(realChain.call());
//读取网络写入的头部信息
responseBuilder = httpCodec.readResponseHeaders(false);
}
Response response = responseBuilder
.request(request)
.handshake(streamAllocation.connection().handshake())
.sentRequestAtMillis(sentRequestMillis)
.receivedResponseAtMillis(System.currentTimeMillis())
.build();
...
//读取Response
//标记1
response = response.newBuilder()
.body(httpCodec.openResponseBody(response))
.build();
...
return response;
}
我们只取核心代码标记1,通过httpCodec的openResponseBody方法获取body,并通过build创建Response对象,最终返回Response对象。
到这里OkHttp的同步和异步请求、分发器,以及五个拦截器都已经介绍一边了,怎么说呢,OkHttp的源码实在太庞大了,要想全部理解需要花费很长时间,我只是整理出了OkHttp中几个比较重要的概念,了解它的整体脉络,这样你才能有条理的分析它的源码。
838794-506ddad529df4cd4.webp.jpg
搜索微信“顾林海”公众号,定期推送优质文章。
网友评论