go
的list
实现了双向链表
源码解析
// Element is an element of a linked list.
// 定义链表节点结构体
type Element struct {
// Next and previous pointers in the doubly-linked list of elements.
// To simplify the implementation, internally a list l is implemented
// as a ring, such that &l.root is both the next element of the last
// list element (l.Back()) and the previous element of the first list
// element (l.Front()).
// 前项指针和后项指针
next, prev *Element
// The list to which this element belongs.
// 所属的链表
list *List
// The value stored with this element.
// 节点值
Value interface{}
}
// Next returns the next list element or nil.
// 获取后项节点
func (e *Element) Next() *Element {
// 这里会规避掉root节点,因为list的root节点只是个起始标记,不存才任何数据
if p := e.next; e.list != nil && p != &e.list.root {
return p
}
return nil
}
// Prev returns the previous list element or nil.
// 获取前项节点
func (e *Element) Prev() *Element {
// 因为是双向链表,所以向后获取也可能获取到root节点,也需要规避
if p := e.prev; e.list != nil && p != &e.list.root {
return p
}
return nil
}
// List represents a doubly linked list.
// The zero value for List is an empty list ready to use.
type List struct {
// 头节点,不存数据,只做头部标识
root Element // sentinel list element, only &root, root.prev, and root.next are used
// 链表长度
len int // current list length excluding (this) sentinel element
}
// Init initializes or clears list l.
// 链表初始化
func (l *List) Init() *List {
l.root.next = &l.root
l.root.prev = &l.root
l.len = 0
return l
}
// New returns an initialized list.
func New() *List { return new(List).Init() }
// Len returns the number of elements of list l.
// The complexity is O(1).
func (l *List) Len() int { return l.len }
// Front returns the first element of list l or nil if the list is empty.
// 获取链表的第一个节点
func (l *List) Front() *Element {
if l.len == 0 {
return nil
}
return l.root.next
}
// Back returns the last element of list l or nil if the list is empty.
// 获取链表的最后一个节点
func (l *List) Back() *Element {
if l.len == 0 {
return nil
}
return l.root.prev
}
// lazyInit lazily initializes a zero List value.
// 延迟初始化
func (l *List) lazyInit() {
// 这里用l.root.next作为判断是否初始化的依据而不是l.len,因为即使初始化过的l,l.len也有可能为0
if l.root.next == nil {
l.Init()
}
}
// insert inserts e after at, increments l.len, and returns e.
// 在at节点之后插入e节点
func (l *List) insert(e, at *Element) *Element {
e.prev = at
e.next = at.next
e.prev.next = e
e.next.prev = e
e.list = l
l.len++
return e
}
// insertValue is a convenience wrapper for insert(&Element{Value: v}, at).
func (l *List) insertValue(v interface{}, at *Element) *Element {
return l.insert(&Element{Value: v}, at)
}
// remove removes e from its list, decrements l.len, and returns e.
// 从链表中删除e节点
func (l *List) remove(e *Element) *Element {
e.prev.next = e.next
e.next.prev = e.prev
e.next = nil // avoid memory leaks
e.prev = nil // avoid memory leaks
e.list = nil
l.len--
return e
}
// move moves e to next to at and returns e.
// 将e节点挪到at节点的后面
func (l *List) move(e, at *Element) *Element {
if e == at {
return e
}
e.prev.next = e.next
e.next.prev = e.prev
e.prev = at
e.next = at.next
e.prev.next = e
e.next.prev = e
return e
}
// Remove removes e from l if e is an element of list l.
// It returns the element value e.Value.
// The element must not be nil.
func (l *List) Remove(e *Element) interface{} {
// 这里隐含了双重判断,第一是判断l是否初始化过,第二是判断e是否是l上的节点
if e.list == l {
// if e.list == l, l must have been initialized when e was inserted
// in l or l == nil (e is a zero Element) and l.remove will crash
l.remove(e)
}
return e.Value
}
// PushFront inserts a new element e with value v at the front of list l and returns e.
func (l *List) PushFront(v interface{}) *Element {
// 延迟初始化,这里会保证l已经初始化过了
// 这也是为什么上面Remove方法可以通过e.list == l来做两重判断
l.lazyInit()
return l.insertValue(v, &l.root)
}
// PushBack inserts a new element e with value v at the back of list l and returns e.
func (l *List) PushBack(v interface{}) *Element {
l.lazyInit()
return l.insertValue(v, l.root.prev)
}
// InsertBefore inserts a new element e with value v immediately before mark and returns e.
// If mark is not an element of l, the list is not modified.
// The mark must not be nil.
func (l *List) InsertBefore(v interface{}, mark *Element) *Element {
// 同Remove
if mark.list != l {
return nil
}
// see comment in List.Remove about initialization of l
return l.insertValue(v, mark.prev)
}
// InsertAfter inserts a new element e with value v immediately after mark and returns e.
// If mark is not an element of l, the list is not modified.
// The mark must not be nil.
func (l *List) InsertAfter(v interface{}, mark *Element) *Element {
if mark.list != l {
return nil
}
// see comment in List.Remove about initialization of l
return l.insertValue(v, mark)
}
// MoveToFront moves element e to the front of list l.
// If e is not an element of l, the list is not modified.
// The element must not be nil.
func (l *List) MoveToFront(e *Element) {
if e.list != l || l.root.next == e {
return
}
// see comment in List.Remove about initialization of l
l.move(e, &l.root)
}
// MoveToBack moves element e to the back of list l.
// If e is not an element of l, the list is not modified.
// The element must not be nil.
func (l *List) MoveToBack(e *Element) {
if e.list != l || l.root.prev == e {
return
}
// see comment in List.Remove about initialization of l
l.move(e, l.root.prev)
}
// MoveBefore moves element e to its new position before mark.
// If e or mark is not an element of l, or e == mark, the list is not modified.
// The element and mark must not be nil.
func (l *List) MoveBefore(e, mark *Element) {
if e.list != l || e == mark || mark.list != l {
return
}
l.move(e, mark.prev)
}
// MoveAfter moves element e to its new position after mark.
// If e or mark is not an element of l, or e == mark, the list is not modified.
// The element and mark must not be nil.
func (l *List) MoveAfter(e, mark *Element) {
if e.list != l || e == mark || mark.list != l {
return
}
l.move(e, mark)
}
// PushBackList inserts a copy of another list at the back of list l.
// The lists l and other may be the same. They must not be nil.
// 将链表other连接到l后面
func (l *List) PushBackList(other *List) {
l.lazyInit()
for i, e := other.Len(), other.Front(); i > 0; i, e = i-1, e.Next() {
l.insertValue(e.Value, l.root.prev)
}
}
// PushFrontList inserts a copy of another list at the front of list l.
// The lists l and other may be the same. They must not be nil.
// 将链表l连接到other后面,root节点不变
func (l *List) PushFrontList(other *List) {
l.lazyInit()
for i, e := other.Len(), other.Back(); i > 0; i, e = i-1, e.Prev() {
l.insertValue(e.Value, &l.root)
}
}
举个栗子
func main() {
l := list.New()
l.PushFront(1)
e := l.PushBack(4)
e = l.InsertBefore(2, e)
l.InsertAfter(3, e)
p(l) // 1 ->2 ->3 ->4 ->
front := l.Front()
back := l.Back()
l.MoveToBack(front)
p(l) // 2 ->3 ->4 ->1 ->
l.MoveToFront(back)
p(l) // 4 ->2 ->3 ->1 ->
l.Remove(front)
p(l) // 4 ->2 ->3 ->
l1 := list.New()
l1.PushBack(5)
l1.PushBack(6)
l.PushBackList(l1)
p(l) // 4 ->2 ->3 ->5 ->6 ->
l.PushFrontList(l1)
p(l) // 5 ->6 ->4 ->2 ->3 ->5 ->6 ->
l1.PushBackList(l1)
p(l1) // 5 ->6 ->5 ->6 ->
}
func p(l *list.List) {
e := l.Front()
for e != nil {
fmt.Printf("%d ->", e.Value.(int))
e = e.Next()
}
fmt.Println("")
}
总结
list
通过构造root标识节点,实现了双向链,快速的找到front和last数据节点,且在节点的插入,移动等操作中,对于头尾的位置,不需要做特殊的判断,很好的兼容统一处理逻辑,同时节点结构体包含了其所属链表,不仅可以用来做双重判断,还能增加安全性,不过,这个对于两个链表连接的操作不太友好,需要每次都进行节点复制
网友评论