题目:八皇后问题
思路:就用回溯法。
这个算法类似动态规划的思想。
代码如下:
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
// 八皇后问题
// 回溯法的典型代表,初学计算机的时候,这个算法算是比较难的了,现在看来真是一般的计算问题。
int g_nCount;
struct coordinate
{
int x;
int y;
coordinate(int n1, int n2) : x(n1), y(n2) {}
};
void PrintXYSeq(coordinate xy)
{
cout << "[" << xy.x << "," << xy.y << "]" << " ";
}
bool CheckXY(vector<vector<int> > & vecMatrix, int row, int col)
{
return vecMatrix[row][col] == 0;
}
void ModifyXY(vector<vector<int> > & vecMatrix, int row, int col, int nLen, bool bFlag)
{
int base = 1;
if (bFlag) base = 1;
else base = -1;
for (int i=0; i<nLen; ++i) {
vecMatrix[row][i] += base;
}
for (int i=0; i<nLen; ++i) {
vecMatrix[i][col] += base;
}
for (int i=row,j=col; i>=0 && j>=0; --i, --j) {
vecMatrix[i][j] += base;
}
for (int i=row,j=col; i>=0 && j<nLen; --i, ++j) {
vecMatrix[i][j] += base;
}
for (int i=row,j=col; i<nLen && j<nLen; ++i, ++j) {
vecMatrix[i][j] += base;
}
for (int i=row,j=col; i<nLen && j>=0; ++i, --j) {
vecMatrix[i][j] += base;
}
}
void GenerateSeq(vector<coordinate> & vecSeq, int row, int col, int nLen, vector<vector<int> > & vecMatrix)
{
if (row == nLen) {
for_each(vecSeq.begin(), vecSeq.end(), PrintXYSeq);
cout << endl;
++g_nCount;
return ;
}
for (int i=col; i<nLen; ++i) {
if (CheckXY(vecMatrix, row, i)) {
ModifyXY(vecMatrix, row, i, nLen, true);
vecSeq.push_back(coordinate(row, i));
GenerateSeq(vecSeq, row+1, 0, nLen, vecMatrix);
vecSeq.pop_back();
ModifyXY(vecMatrix, row, i, nLen, false);
}
}
}
void Output()
{
const int nLen = 8;
vector<vector<int> > vecMatrix(nLen, vector<int>(nLen, 0));
vector<coordinate> vecSeq;
GenerateSeq(vecSeq, 0, 0, nLen, vecMatrix);
}
int main(int argc, char ** argv)
{
Output();
cout << g_nCount << endl;
return 0;
}
上面我使用的方法应该是算快的了,给个效率更高的八皇后问题
网友评论