在数据分析领域,python是一个绕不开的知识和工具,如果不会用python就很难说自己会数据分析,但是最近很多想要入门数据分析的小白经常问我,Python怎么入门?Python虽然被称作是“最简洁的语言”,但是它终究还是一门编程语言,想要入门还需要掌握一些基础知识和技巧。
为此,我先列上一个学习计划,在接下来的一个月里会根据学习计划,整理、梳理出Python的入门学习知识,对于那些想要学习Python的同学们提供一个参考:
在这一章里,主要是介绍我们为什么要用python进行数据分析,以及python需要掌握的一些基础知识,我们能够用python做什么?在第一章里,让大家在感性的认知上首先了解一下这个分析工具,主要涵盖的内容包括python的下载与环境安装、数据类型介绍和内置数据结构介绍:
python的下载和安装环境:难点主要是在环境的安装上,很多小白往往一腔热血但是面对环境安装的时候就泄了气,因为我会用Anaconda为例进行环境的安装,同时我建议初学者不要下载具有IDE功能的集成开发环境,比如Eclipse插件等。
数据类型:python的数据类型比较简单,基本上就可以分为两大类——数值和字符串。
数据结构:python的数据结构可以分为四种,列表、元组、字典、集合。
数据分析的目的是从数据里找规律,因此想要掌握python必须要学习一些基础的数理理论,这是成为一个数据分析师必备的能力。对于python来说,其涉及的数理统计学基础主要由算法、统计学、概率论等,在这一章里我会进行简单的介绍:
sql是python的基础,如果你已经掌握了SQL,那么这一章你就可以直接跳过,那么你就要好好学习这部分的内容,因为sql是入门python的关键基础,同时它也是每个数据分析师必备的技能,主要目的是用sql来进行增删改查等操作,对数据进行筛选。
这一部分主要是对python的基础语法进行讲解,这一部分是学习python的关键,只要能够熟悉掌握各种语法和语句,基本上就学会了python,当然这一部分只是进行简单的入门,更加进阶的语法暂时不会涉及。
在这一章里,我会简单讲解一下如何利用python的matplotlib进行数据可视化的操作,python中有着非常优秀的可视化库,进行可视化制作也是数据分析必备的能力之一,在这一部分中我会使用几种不同数据图表来讲解基于matplotlib的数据可视化。
到了最后一章,你应该已经基本掌握了python的操作,最后一步就是要进行分析项目的实战,在这一部分中我会以几个实际中遇到的数据分析项目为例进行实操,包括爬虫+分析、业务指标分析等等,为大家拓宽数据分析的思路,早日成为数据分析师!
虽然我的标题是一个月入门python,但是python的掌握需要在大量的实践中不断磨合纠错,才能得到实质性的提高,因为我的学习计划只是希望带给完全小白的新手一点思路和指导,让他们能够少走一些弯路。
网友评论