废话不说,直接上书单!
PS:本书单是鉴于本人多年浸淫大数据领域的经验,按照学习大数据的阶段和技术所列的书单,适合刚刚接触大数据领域的新人
1
第一阶段:大数据基础语言的学习
• Java语言基础:Java开发介绍、熟悉Eclipse开发工具、Java语言基础、Java流程控制、Java字符串、Java数组与类和对象、数字处理类与核心技术、I/O与反射、多线程、Swing程序与集合
• HTML、CSS与JavaScript:PC端网站布局、HTML5+CSS3基础、WebApp页面布局、原生JavaScript交互功能开发、Ajax异步交互、jQuery应用
• JavaWeb和数据库:数据库、JavaWeb开发核心、JavaWeb开发内幕
推荐书籍:
• 《Effective Java》
本书为我们带来了共78条程序员必备的经验法则,针对你每天都会遇到的编程问题提出了有效、实用的解决方案。书中的每一章都包含几个"条目",以简洁的形式呈现,自成独立的短文,它们提出了具体的建议,对于Java平台精妙之处的独到见解,以及优秀的代码范例。每个条目的综合描述和解释都阐明了应该怎么做,不应该怎么做,以及为什么。
如果你对大数据开发感兴趣,想系统学习大数据的话,可以加入大数据技术学习交流扣扣群:522189307,私信管理员即可免费领取开发工具以及入门学习资料
2
第二阶段:Linux&Hadoop生态体系
Linux体系、Hadoop离线计算大纲、分布式数据库Hbase、数据仓库Hive、数据迁移工具Sqoop、Flume分布式日志框架
推荐书籍:
• 《Big Data》
在大数据的背景下,我很少看到关于数据建模,数据层,数据处理需求分析以及数据架构和存储实现问题。这本书却提供了令人耳目一新的全面解决方案。
• 《Hadoop权威指南》
《Hadoop权威指南(中文版)》从Hadoop的缘起开始,由浅入深,结合理论和实践,全方位地介绍Hadoop这一高性能处理海量数据集的理想工具。
• 《Hive编程指南》
《Hive编程指南》是一本Apache Hive的编程指南,旨在介绍如何使用Hive的SQL方法HiveQL来汇总、查询和分析存储在Hadoop分布式文件系统上的大数据集合。
3
第三阶段:分布式计算
• 分布式计算框架:Python编程语言、Scala编程语言、Spark大数据处理、Spark—Streaming大数据处理、Spark—Mlib机器学习、Spark—GraphX 图计算、实战一:基于Spark的推荐系统(某一线公司真实项目)、实战二:新浪网(http://www.sina.com.cn)
• storm技术架构体系:Storm原理与基础、消息队列kafka、Redis工具、zookeeper详解、实战一:日志告警系统项目、实战二:猜你喜欢推荐系统实战
推荐书籍:
• 《Spark 快速大数据分析》
《Spark 快速大数据分析》是一本为Spark 初学者准备的书,它没有过多深入实现细节,而是更多关注上层用户的具体用法。
不过,本书绝不仅仅限于Spark 的用法,它对Spark 的核心概念和基本原理也有较为全面的介绍,让读者能够知其然且知其所以然。
• 《Spark机器学习:核心技术与实践》
本书采用理论与大量实例相结合的方式帮助开发人员掌握使用Spark进行分析和实现机器学习算法。
通过这些示例和Spark在各种企业级系统中的应用,帮助读者解锁Spark机器学习算法的复杂性,通过数据分析产生有价值的数据洞察力。
4
第四阶段:大数据项目实战
数据获取、数据处理、数据分析、数据展现、数据应用
5
第五阶段:大数据分析 —AI(人工智能)
主要是讲解Data Analyze数据分析基础、数据可视化、sklearn中三类朴素贝叶斯算法以及python机器学习等提升个人能力的内容!
网友评论