美文网首页R语言学习bioinformatics绘图技巧
R语言可视化(二十八):瀑布图绘制

R语言可视化(二十八):瀑布图绘制

作者: Davey1220 | 来源:发表于2020-10-18 09:49 被阅读0次

    28. 瀑布图绘制


    清除当前环境中的变量

    rm(list=ls())
    

    设置工作目录

    setwd("C:/Users/Dell/Desktop/R_Plots/28waterfall/")
    

    使用waterfalls包绘制瀑布图

    # 安装并加载所需的R包
    #install.packages("waterfalls")
    library(waterfalls)
    
    # 构建示例数据
    data <- data.frame(category = letters[1:5],
                       value = c(100, -20, 10, 20, 110))
    head(data)
    ##   category value
    ## 1        a   100
    ## 2        b   -20
    ## 3        c    10
    ## 4        d    20
    ## 5        e   110
    
    # 使用waterfall函数绘制瀑布图
    waterfall(.data = data, 
              fill_colours = colorRampPalette(c("#1b7cd6", "#d5e6f2"))(5),
              fill_by_sign = FALSE)
    
    image.png

    使用maftools包绘制瀑布图

    # 安装并加载所需的R包
    #BiocManager::install("maftools")
    library(maftools)
    
    # 查看示例数据
    #path to TCGA LAML MAF file
    # maf格式的基因突变信息
    laml.maf = system.file('extdata', 'tcga_laml.maf.gz', package = 'maftools') 
    #clinical information containing survival information and histology. This is optional
    # 临床表型注释信息
    laml.clin = system.file('extdata', 'tcga_laml_annot.tsv', package = 'maftools') 
    
    # 使用read.maf函数读取数据
    laml = read.maf(maf = laml.maf, clinicalData = laml.clin)
    ## -Reading
    ## -Validating
    ## -Silent variants: 475 
    ## -Summarizing
    ## -Processing clinical data
    ## -Finished in 0.380s elapsed (0.320s cpu)
    
    #Typing laml shows basic summary of MAF file.
    # 查看maf对象
    laml
    ## An object of class  MAF 
    ##                    ID          summary  Mean Median
    ##  1:        NCBI_Build               37    NA     NA
    ##  2:            Center genome.wustl.edu    NA     NA
    ##  3:           Samples              193    NA     NA
    ##  4:            nGenes             1241    NA     NA
    ##  5:   Frame_Shift_Del               52 0.271      0
    ##  6:   Frame_Shift_Ins               91 0.474      0
    ##  7:      In_Frame_Del               10 0.052      0
    ##  8:      In_Frame_Ins               42 0.219      0
    ##  9: Missense_Mutation             1342 6.990      7
    ## 10: Nonsense_Mutation              103 0.536      0
    ## 11:       Splice_Site               92 0.479      0
    ## 12:             total             1732 9.021      9
    
    #Shows sample summry
    # 获取maf对象汇总信息
    getSampleSummary(laml)
    ##      Tumor_Sample_Barcode Frame_Shift_Del Frame_Shift_Ins In_Frame_Del
    ##   1:         TCGA-AB-3009               0               5            0
    ##   2:         TCGA-AB-2807               1               0            1
    ##   3:         TCGA-AB-2959               0               0            0
    ##   4:         TCGA-AB-3002               0               0            0
    ##   5:         TCGA-AB-2849               0               1            0
    ##  ---                                                                  
    ## 188:         TCGA-AB-2933               0               0            0
    ## 189:         TCGA-AB-2942               0               0            0
    ## 190:         TCGA-AB-2946               0               0            0
    ## 191:         TCGA-AB-2954               0               0            0
    ## 192:         TCGA-AB-2982               0               0            0
    ##      In_Frame_Ins Missense_Mutation Nonsense_Mutation Splice_Site total
    ##   1:            1                25                 2           1    34
    ##   2:            0                16                 3           4    25
    ##   3:            0                22                 0           1    23
    ##   4:            0                15                 1           5    21
    ##   5:            0                16                 1           2    20
    ##  ---                                                                   
    ## 188:            0                 1                 0           0     1
    ## 189:            1                 0                 0           0     1
    ## 190:            0                 1                 0           0     1
    ## 191:            0                 1                 0           0     1
    ## 192:            0                 1                 0           0     1
    
    #Shows all fields in MAF
    getFields(laml)
    ##  [1] "Hugo_Symbol"            "Entrez_Gene_Id"        
    ##  [3] "Center"                 "NCBI_Build"            
    ##  [5] "Chromosome"             "Start_Position"        
    ##  [7] "End_Position"           "Strand"                
    ##  [9] "Variant_Classification" "Variant_Type"          
    ## [11] "Reference_Allele"       "Tumor_Seq_Allele1"     
    ## [13] "Tumor_Seq_Allele2"      "Tumor_Sample_Barcode"  
    ## [15] "Protein_Change"         "i_TumorVAF_WU"         
    ## [17] "i_transcript_name"
    
    # 使用plotmafSummary函数可视化maf对象汇总信息
    plotmafSummary(maf = laml, 
                   rmOutlier = TRUE, 
                   addStat = 'median', 
                   dashboard = TRUE, 
                   titvRaw = FALSE)
    
    image.png
    # 使用oncoplot函数绘制基因突变瀑布图
    #oncoplot for top ten mutated genes.
    # 展示top10变异基因的信息
    oncoplot(maf = laml, top = 10)
    
    image.png
    # 自定义变异类型的颜色
    library(RColorBrewer)
    vc_cols <- brewer.pal(8,"Set1")
    names(vc_cols) <- levels(laml@data$Variant_Classification)
    head(vc_cols)
    ##   Frame_Shift_Del   Frame_Shift_Ins      In_Frame_Del      In_Frame_Ins 
    ##         "#E41A1C"         "#377EB8"         "#4DAF4A"         "#984EA3" 
    ## Missense_Mutation Nonsense_Mutation 
    ##         "#FF7F00"         "#FFFF33"
    
    oncoplot(maf = laml, top = 20,colors = vc_cols)
    
    image.png
    # 添加临床注释信息,按注释类型进行排序
    names(laml@clinical.data)
    ## [1] "Tumor_Sample_Barcode"    "FAB_classification"     
    ## [3] "days_to_last_followup"   "Overall_Survival_Status"
    
    oncoplot(maf = laml, top = 20,
             clinicalFeatures = "FAB_classification",
             sortByAnnotation = T)
    
    image.png
    # 展示多个临床注释信息
    oncoplot(maf = laml, top = 20,
             clinicalFeatures = c("FAB_classification","Overall_Survival_Status"),
             sortByAnnotation = T)
    
    image.png

    使用GenVisR包绘制瀑布图

    # 安装并加载所需的R包
    #BiocManager::install("GenVisR")
    library(GenVisR)
    
    # 查看内置示例数据
    head(brcaMAF)
    ##   Hugo_Symbol Entrez_Gene_Id           Center NCBI_Build Chromosome
    ## 1       A2ML1         144568 genome.wustl.edu         37         12
    ## 2       AADAC             13 genome.wustl.edu         37          3
    ## 3       AADAT          51166 genome.wustl.edu         37          4
    ## 4        AASS          10157 genome.wustl.edu         37          7
    ## 5        ABAT              0 genome.wustl.edu         37         16
    ## 6       ABCA3             21 genome.wustl.edu         37         16
    ##   Start_Position End_Position Strand Variant_Classification Variant_Type
    ## 1        8994108      8994108      +      Missense_Mutation          SNP
    ## 2      151545656    151545656      +      Missense_Mutation          SNP
    ## 3      170991750    170991750      +                 Silent          SNP
    ## 4      121756793    121756793      +      Missense_Mutation          SNP
    ## 5        8857982      8857982      +                 Silent          SNP
    ## 6        2335631      2335631      +      Missense_Mutation          SNP
    ##   Reference_Allele Tumor_Seq_Allele1 Tumor_Seq_Allele2 dbSNP_RS
    ## 1                G                 G                 C    novel
    ## 2                A                 A                 G    novel
    ## 3                G                 G                 A    novel
    ## 4                G                 G                 A    novel
    ## 5                G                 G                 A    novel
    ## 6                C                 T                 T    novel
    ##   dbSNP_Val_Status         Tumor_Sample_Barcode
    ## 1                  TCGA-A1-A0SO-01A-22D-A099-09
    ## 2                  TCGA-A2-A0EU-01A-22W-A071-09
    ## 3                  TCGA-A2-A0ER-01A-21W-A050-09
    ## 4                  TCGA-A2-A0EN-01A-13D-A099-09
    ## 5                  TCGA-A1-A0SI-01A-11D-A142-09
    ## 6                  TCGA-A2-A0D0-01A-11W-A019-09
    ##    Matched_Norm_Sample_Barcode Match_Norm_Seq_Allele1
    ## 1 TCGA-A1-A0SO-10A-03D-A099-09                      G
    ## 2 TCGA-A2-A0EU-10A-01W-A071-09                      A
    ## 3 TCGA-A2-A0ER-10A-01W-A055-09                      G
    ## 4 TCGA-A2-A0EN-10A-01D-A099-09                      G
    ## 5 TCGA-A1-A0SI-10B-01D-A142-09                      G
    ## 6 TCGA-A2-A0D0-10A-01W-A021-09                      C
    ##   Match_Norm_Seq_Allele2 Tumor_Validation_Allele1 Tumor_Validation_Allele2
    ## 1                      G                        G                        C
    ## 2                      A                                                  
    ## 3                      G                                                  
    ## 4                      G                        G                        A
    ## 5                      G                                                  
    ## 6                      C                                                  
    ##   Match_Norm_Validation_Allele1 Match_Norm_Validation_Allele2
    ## 1                             G                             G
    ## 2                                                            
    ## 3                                                            
    ## 4                             G                             G
    ## 5                                                            
    ## 6                                                            
    ##   Verification_Status Validation_Status Mutation_Status Sequencing_Phase
    ## 1             Unknown             Valid         Somatic         Phase_IV
    ## 2             Unknown          Untested         Somatic         Phase_IV
    ## 3             Unknown          Untested         Somatic         Phase_IV
    ## 4             Unknown             Valid         Somatic         Phase_IV
    ## 5             Unknown          Untested         Somatic         Phase_IV
    ## 6             Unknown          Untested         Somatic         Phase_IV
    ##   Sequence_Source Validation_Method Score BAM_File      Sequencer
    ## 1             WXS Illumina_WXS_gDNA     1    dbGAP Illumina GAIIx
    ## 2             WXS              none     1    dbGAP Illumina GAIIx
    ## 3             WXS              none     1    dbGAP Illumina GAIIx
    ## 4             WXS Illumina_WXS_gDNA     1    dbGAP Illumina GAIIx
    ## 5             WXS              none     1    dbGAP Illumina GAIIx
    ## 6             WXS              none     1    dbGAP Illumina GAIIx
    ##                      Tumor_Sample_UUID
    ## 1 b3568259-c63c-4eb1-bbc7-af711ddd33db
    ## 2 de30da8f-903f-428e-a63d-59625fc858a9
    ## 3 31ed187e-9bfe-4ca3-8cbb-10c1e0184331
    ## 4 12362ad7-6866-4e7a-9ec6-8a0a68df8896
    ## 5 e218c272-a7e1-4bc9-b8c5-d2d1c903550f
    ## 6 3f20d0fe-aaa1-40f1-b2c1-7f070f93aef5
    ##               Matched_Norm_Sample_UUID chromosome_name_WU  start_WU
    ## 1 17ba8cdb-e35b-4496-a787-d1a7ee7d4a1e                 12   8994108
    ## 2 1583a7c5-c835-44fa-918a-1448abf6533d                  3 151545656
    ## 3 2bc2fdaf-fb2f-4bfd-9e20-e20edff6633a                  4 170991750
    ## 4 ad478c68-a18b-4529-ad7a-86039e6da6b1                  7 121756793
    ## 5 fbcab9dc-4a6b-4928-9459-699c9932e3e1                 16   8857982
    ## 6 bbf1c43d-d7b3-4574-a074-d22ad537829c                 16   2335631
    ##     stop_WU reference_WU variant_WU type_WU gene_name_WU
    ## 1   8994108            G          C     SNP        A2ML1
    ## 2 151545656            A          G     SNP        AADAC
    ## 3 170991750            G          A     SNP        AADAT
    ## 4 121756793            G          A     SNP         AASS
    ## 5   8857982            G          A     SNP         ABAT
    ## 6   2335631            C          T     SNP        ABCA3
    ##   transcript_name_WU transcript_species_WU transcript_source_WU
    ## 1        NM_144670.3                 human              genbank
    ## 2        NM_001086.2                 human              genbank
    ## 3        NM_016228.3                 human              genbank
    ## 4        NM_005763.3                 human              genbank
    ## 5        NM_000663.4                 human              genbank
    ## 6        NM_001089.2                 human              genbank
    ##   transcript_version_WU strand_WU transcript_status_WU trv_type_WU
    ## 1                58_37c         1            validated    missense
    ## 2                58_37c         1             reviewed    missense
    ## 3                58_37c        -1             reviewed      silent
    ## 4                58_37c        -1             reviewed    missense
    ## 5                58_37c         1             reviewed      silent
    ## 6                58_37c        -1             reviewed    missense
    ##   c_position_WU amino_acid_change_WU ucsc_cons_WU
    ## 1        c.1224              p.W408C        0.995
    ## 2         c.896              p.N299S        0.000
    ## 3         c.708               p.L236        1.000
    ## 4         c.788              p.T263M        1.000
    ## 5         c.423               p.E141        0.987
    ## 6        c.3295             p.D1099N        0.980
    ##                                                      domain_WU
    ## 1                                                         NULL
    ## 2      HMMPfam_Abhydrolase_3,superfamily_alpha/beta-Hydrolases
    ## 3 HMMPfam_Aminotran_1_2,superfamily_PLP-dependent transferases
    ## 4                                          HMMPfam_AlaDh_PNT_C
    ## 5     HMMPfam_Aminotran_3,superfamily_PyrdxlP-dep_Trfase_major
    ## 6                                                         NULL
    ##                                                                                                                                                                                                                                                all_domains_WU
    ## 1             HMMPfam_A2M,HMMPfam_A2M_N,superfamily_Terpenoid cyclases/Protein prenyltransferases,HMMPfam_A2M_recep,superfamily_Alpha-macroglobulin receptor domain,HMMPfam_A2M_N_2,HMMPfam_A2M_comp,HMMPfam_Thiol-ester_cl,PatternScan_ALPHA_2_MACROGLOBULIN
    ## 2                                                                                                                                                                         PatternScan_LIPASE_GDXG_SER,HMMPfam_Abhydrolase_3,superfamily_alpha/beta-Hydrolases
    ## 3                                                                                                                                                                                                HMMPfam_Aminotran_1_2,superfamily_PLP-dependent transferases
    ## 4 HMMPfam_Saccharop_dh,HMMPfam_AlaDh_PNT_C,HMMPfam_AlaDh_PNT_N,superfamily_NAD(P)-binding Rossmann-fold domains,superfamily_Formate/glycerate dehydrogenase catalytic domain-like,superfamily_Glyceraldehyde-3-phosphate dehydrogenase-like C-terminal domain
    ## 5                                                                                                                                                                    HMMPfam_Aminotran_3,PatternScan_AA_TRANSFER_CLASS_3,superfamily_PyrdxlP-dep_Trfase_major
    ## 6                                                                                                                            HMMPfam_ABC_tran,HMMSmart_SM00382,PatternScan_ABC_TRANSPORTER_1,superfamily_P-loop containing nucleoside triphosphate hydrolases
    ##   deletion_substructures_WU transcript_error
    ## 1                         -        no_errors
    ## 2                         -        no_errors
    ## 3                         -        no_errors
    ## 4                         -        no_errors
    ## 5                         -        no_errors
    ## 6                         -        no_errors
    
    names(brcaMAF)
    ##  [1] "Hugo_Symbol"                   "Entrez_Gene_Id"               
    ##  [3] "Center"                        "NCBI_Build"                   
    ##  [5] "Chromosome"                    "Start_Position"               
    ##  [7] "End_Position"                  "Strand"                       
    ##  [9] "Variant_Classification"        "Variant_Type"                 
    ## [11] "Reference_Allele"              "Tumor_Seq_Allele1"            
    ## [13] "Tumor_Seq_Allele2"             "dbSNP_RS"                     
    ## [15] "dbSNP_Val_Status"              "Tumor_Sample_Barcode"         
    ## [17] "Matched_Norm_Sample_Barcode"   "Match_Norm_Seq_Allele1"       
    ## [19] "Match_Norm_Seq_Allele2"        "Tumor_Validation_Allele1"     
    ## [21] "Tumor_Validation_Allele2"      "Match_Norm_Validation_Allele1"
    ## [23] "Match_Norm_Validation_Allele2" "Verification_Status"          
    ## [25] "Validation_Status"             "Mutation_Status"              
    ## [27] "Sequencing_Phase"              "Sequence_Source"              
    ## [29] "Validation_Method"             "Score"                        
    ## [31] "BAM_File"                      "Sequencer"                    
    ## [33] "Tumor_Sample_UUID"             "Matched_Norm_Sample_UUID"     
    ## [35] "chromosome_name_WU"            "start_WU"                     
    ## [37] "stop_WU"                       "reference_WU"                 
    ## [39] "variant_WU"                    "type_WU"                      
    ## [41] "gene_name_WU"                  "transcript_name_WU"           
    ## [43] "transcript_species_WU"         "transcript_source_WU"         
    ## [45] "transcript_version_WU"         "strand_WU"                    
    ## [47] "transcript_status_WU"          "trv_type_WU"                  
    ## [49] "c_position_WU"                 "amino_acid_change_WU"         
    ## [51] "ucsc_cons_WU"                  "domain_WU"                    
    ## [53] "all_domains_WU"                "deletion_substructures_WU"    
    ## [55] "transcript_error"
    
    # 使用waterfall函数绘制瀑布图
    # Plot only genes with mutations in 6% or more of samples
    # 只展示至少在6%的样本中变异的基因
    waterfall(brcaMAF, fileType="MAF", mainRecurCutoff = 0.06)
    ## Checking if input is properly formatted...
    ## Calculating frequency of mutations...
    ## setting mutation hierarchy...
    ## Performing recurrence cutoff...
    ## NULL
    
    image.png
    # Plot only the specified genes
    # 展示特定基因的变异信息
    # Define specific genes to plot
    genes_to_plot <- c("PIK3CA", "TP53", "USH2A", "MLL3", "BRCA1", "CDKN1B")
    waterfall(brcaMAF, plotGenes = genes_to_plot)
    # Checking if input is properly formatted...
    ## Calculating frequency of mutations...
    ## Removing genes not in: PIK3CA, TP53, USH2A, MLL3, BRCA1, CDKN1B
    ## setting mutation hierarchy...
    ## NULL
    
    image.png
    # Create clinical data
    # 添加临床表型信息
    subtype <- c("lumA", "lumB", "her2", "basal", "normal")
    subtype <- sample(subtype, 50, replace = TRUE)
    age <- c("20-30", "31-50", "51-60", "61+")
    age <- sample(age, 50, replace = TRUE)
    sample <- as.character(unique(brcaMAF$Tumor_Sample_Barcode))
    clinical <- as.data.frame(cbind(sample, subtype, age))
    
    # Melt the clinical data into 'long' format.
    library(reshape2)
    clinical <- melt(clinical, id.vars = c("sample"))
    head(clinical)
    ##                         sample variable  value
    ## 1 TCGA-A1-A0SO-01A-22D-A099-09  subtype normal
    ## 2 TCGA-A2-A0EU-01A-22W-A071-09  subtype normal
    ## 3 TCGA-A2-A0ER-01A-21W-A050-09  subtype   lumB
    ## 4 TCGA-A2-A0EN-01A-13D-A099-09  subtype   lumA
    ## 5 TCGA-A1-A0SI-01A-11D-A142-09  subtype   lumB
    ## 6 TCGA-A2-A0D0-01A-11W-A019-09  subtype   lumA
    
    # Run waterfall
    waterfall(brcaMAF, clinDat = clinical, 
              clinVarCol = c(lumA = "blue4", lumB = "deepskyblue", 
                             her2 = "hotpink2", basal = "firebrick2", 
                             normal = "green4", 
                             `20-30` = "#ddd1e7", `31-50` = "#bba3d0", 
                             `51-60` = "#9975b9", `61+` = "#7647a2"), 
              plotGenes = c("PIK3CA", "TP53", "USH2A", "MLL3", "BRCA1"), 
              clinLegCol = 2, 
              clinVarOrder = c("lumA", "lumB", "her2", "basal", "normal", "20-30", "31-50", "51-60", "61+"))
    ## Checking if input is properly formatted...
    ## Calculating frequency of mutations...
    ## Removing genes not in: PIK3CA, TP53, USH2A, MLL3, BRCA1
    ## setting mutation hierarchy...
    
    image.png
    sessionInfo()
    ## R version 3.6.0 (2019-04-26)
    ## Platform: x86_64-w64-mingw32/x64 (64-bit)
    ## Running under: Windows 10 x64 (build 18363)
    ## 
    ## Matrix products: default
    ## 
    ## locale:
    ## [1] LC_COLLATE=Chinese (Simplified)_China.936 
    ## [2] LC_CTYPE=Chinese (Simplified)_China.936   
    ## [3] LC_MONETARY=Chinese (Simplified)_China.936
    ## [4] LC_NUMERIC=C                              
    ## [5] LC_TIME=Chinese (Simplified)_China.936    
    ## 
    ## attached base packages:
    ## [1] parallel  stats     graphics  grDevices utils     datasets  methods  
    ## [8] base     
    ## 
    ## other attached packages:
    ## [1] reshape2_1.4.3      GenVisR_1.16.1      RColorBrewer_1.1-2 
    ## [4] maftools_2.0.16     Biobase_2.44.0      BiocGenerics_0.30.0
    ## [7] waterfalls_0.1.2   
    ## 
    ## loaded via a namespace (and not attached):
    ##  [1] bitops_1.0-6                matrixStats_0.54.0         
    ##  [3] bit64_0.9-7                 doParallel_1.0.14          
    ##  [5] progress_1.2.2              httr_1.4.0                 
    ##  [7] GenomeInfoDb_1.20.0         tools_3.6.0                
    ##  [9] R6_2.4.0                    DBI_1.0.0                  
    ## [11] lazyeval_0.2.2              colorspace_1.4-1           
    ## [13] withr_2.1.2                 tidyselect_0.2.5           
    ## [15] gridExtra_2.3               prettyunits_1.0.2          
    ## [17] bit_1.1-14                  compiler_3.6.0             
    ## [19] DelayedArray_0.10.0         pkgmaker_0.27              
    ## [21] rtracklayer_1.44.0          labeling_0.3               
    ## [23] scales_1.0.0                NMF_0.21.0                 
    ## [25] stringr_1.4.0               digest_0.6.20              
    ## [27] Rsamtools_2.0.0             rmarkdown_1.13             
    ## [29] XVector_0.24.0              pkgconfig_2.0.2            
    ## [31] htmltools_0.3.6             bibtex_0.4.2               
    ## [33] BSgenome_1.52.0             rlang_0.4.7                
    ## [35] RSQLite_2.1.1               gtools_3.8.1               
    ## [37] BiocParallel_1.17.18        dplyr_0.8.3                
    ## [39] VariantAnnotation_1.30.1    RCurl_1.95-4.12            
    ## [41] magrittr_1.5                GenomeInfoDbData_1.2.1     
    ## [43] wordcloud_2.6               Matrix_1.2-17              
    ## [45] Rcpp_1.0.5                  munsell_0.5.0              
    ## [47] S4Vectors_0.22.0            viridis_0.5.1              
    ## [49] stringi_1.4.3               yaml_2.2.0                 
    ## [51] SummarizedExperiment_1.14.0 zlibbioc_1.30.0            
    ## [53] plyr_1.8.4                  FField_0.1.0               
    ## [55] grid_3.6.0                  blob_1.1.1                 
    ## [57] crayon_1.3.4                lattice_0.20-38            
    ## [59] Biostrings_2.52.0           splines_3.6.0              
    ## [61] GenomicFeatures_1.36.3      hms_0.4.2                  
    ## [63] knitr_1.23                  pillar_1.4.2               
    ## [65] GenomicRanges_1.36.0        rngtools_1.4               
    ## [67] codetools_0.2-16            biomaRt_2.40.1             
    ## [69] stats4_3.6.0                XML_3.98-1.20              
    ## [71] glue_1.3.1                  evaluate_0.14              
    ## [73] data.table_1.12.2           foreach_1.4.4              
    ## [75] gtable_0.3.0                purrr_0.3.2                
    ## [77] assertthat_0.2.1            ggplot2_3.2.0              
    ## [79] xfun_0.8                    gridBase_0.4-7             
    ## [81] xtable_1.8-4                viridisLite_0.3.0          
    ## [83] survival_2.44-1.1           tibble_2.1.3               
    ## [85] iterators_1.0.10            GenomicAlignments_1.20.1   
    ## [87] AnnotationDbi_1.46.0        registry_0.5-1             
    ## [89] memoise_1.1.0               IRanges_2.18.1             
    ## [91] cluster_2.0.8
    

    相关文章

      网友评论

        本文标题:R语言可视化(二十八):瀑布图绘制

        本文链接:https://www.haomeiwen.com/subject/tpwqmktx.html